πΉ Title: LightMem: Lightweight and Efficient Memory-Augmented Generation
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18866
β’ PDF: https://arxiv.org/pdf/2510.18866
β’ Github: https://github.com/zjunlp/LightMem
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18866
β’ PDF: https://arxiv.org/pdf/2510.18866
β’ Github: https://github.com/zjunlp/LightMem
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Towards Faithful and Controllable Personalization via Critique-Post-Edit Reinforcement Learning
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18849
β’ PDF: https://arxiv.org/pdf/2510.18849
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18849
β’ PDF: https://arxiv.org/pdf/2510.18849
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: ProCLIP: Progressive Vision-Language Alignment via LLM-based Embedder
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18795
β’ PDF: https://arxiv.org/pdf/2510.18795
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18795
β’ PDF: https://arxiv.org/pdf/2510.18795
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: World-in-World: World Models in a Closed-Loop World
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18135
β’ PDF: https://arxiv.org/pdf/2510.18135
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18135
β’ PDF: https://arxiv.org/pdf/2510.18135
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: MUG-V 10B: High-efficiency Training Pipeline for Large Video Generation Models
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17519
β’ PDF: https://arxiv.org/pdf/2510.17519
β’ Project Page: https://github.com/Shopee-MUG/MUG-V
β’ Github: https://github.com/Shopee-MUG/MUG-V
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17519
β’ PDF: https://arxiv.org/pdf/2510.17519
β’ Project Page: https://github.com/Shopee-MUG/MUG-V
β’ Github: https://github.com/Shopee-MUG/MUG-V
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Video Reasoning without Training
πΉ Publication Date: Published on Oct 19
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17045
β’ PDF: https://arxiv.org/pdf/2510.17045
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 19
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17045
β’ PDF: https://arxiv.org/pdf/2510.17045
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: ssToken: Self-modulated and Semantic-aware Token Selection for LLM Fine-tuning
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18250
β’ PDF: https://arxiv.org/pdf/2510.18250
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18250
β’ PDF: https://arxiv.org/pdf/2510.18250
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: DSI-Bench: A Benchmark for Dynamic Spatial Intelligence
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18873
β’ PDF: https://arxiv.org/pdf/2510.18873
β’ Project Page: https://dsibench.github.io/
β’ Github: https://github.com/SpatialVision/dsibench
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18873
β’ PDF: https://arxiv.org/pdf/2510.18873
β’ Project Page: https://dsibench.github.io/
β’ Github: https://github.com/SpatialVision/dsibench
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Unleashing Scientific Reasoning for Bio-experimental Protocol Generation via Structured Component-based Reward Mechanism
πΉ Publication Date: Published on Oct 17
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.15600
β’ PDF: https://arxiv.org/pdf/2510.15600
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 17
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.15600
β’ PDF: https://arxiv.org/pdf/2510.15600
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Mono4DGS-HDR: High Dynamic Range 4D Gaussian Splatting from Alternating-exposure Monocular Videos
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18489
β’ PDF: https://arxiv.org/pdf/2510.18489
β’ Project Page: https://liujf1226.github.io/Mono4DGS-HDR/
β’ Github: https://github.com/LiuJF1226/Mono4DGS-HDR
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18489
β’ PDF: https://arxiv.org/pdf/2510.18489
β’ Project Page: https://liujf1226.github.io/Mono4DGS-HDR/
β’ Github: https://github.com/LiuJF1226/Mono4DGS-HDR
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: EvoSyn: Generalizable Evolutionary Data Synthesis for Verifiable Learning
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17928
β’ PDF: https://arxiv.org/pdf/2510.17928
β’ Github: https://github.com/kinza99/openevolve
πΉ Datasets citing this paper:
β’ https://huggingface.co/datasets/Elynden/AgentBench-EvoSyn
β’ https://huggingface.co/datasets/Elynden/LiveCodeBench-EvoSyn
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17928
β’ PDF: https://arxiv.org/pdf/2510.17928
β’ Github: https://github.com/kinza99/openevolve
πΉ Datasets citing this paper:
β’ https://huggingface.co/datasets/Elynden/AgentBench-EvoSyn
β’ https://huggingface.co/datasets/Elynden/LiveCodeBench-EvoSyn
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: AlphaQuanter: An End-to-End Tool-Orchestrated Agentic Reinforcement Learning Framework for Stock Trading
πΉ Publication Date: Published on Oct 16
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.14264
β’ PDF: https://arxiv.org/pdf/2510.14264
β’ Project Page: https://alphaquanter.github.io/
β’ Github: https://github.com/AlphaQuanter/AlphaQuanter
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 16
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.14264
β’ PDF: https://arxiv.org/pdf/2510.14264
β’ Project Page: https://alphaquanter.github.io/
β’ Github: https://github.com/AlphaQuanter/AlphaQuanter
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
β€1
πΉ Title: PRISMM-Bench: A Benchmark of Peer-Review Grounded Multimodal Inconsistencies
πΉ Publication Date: Published on Oct 18
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.16505
β’ PDF: https://arxiv.org/pdf/2510.16505
β’ Github: https://github.com/da-luggas/prismm-bench
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 18
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.16505
β’ PDF: https://arxiv.org/pdf/2510.16505
β’ Github: https://github.com/da-luggas/prismm-bench
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Extracting alignment data in open models
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18554
β’ PDF: https://arxiv.org/pdf/2510.18554
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18554
β’ PDF: https://arxiv.org/pdf/2510.18554
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
β€1
πΉ Title: PokeeResearch: Effective Deep Research via Reinforcement Learning from AI Feedback and Robust Reasoning Scaffold
πΉ Publication Date: Published on Oct 17
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.15862
β’ PDF: https://arxiv.org/pdf/2510.15862
β’ Github: https://github.com/Pokee-AI/PokeeResearchOSS
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 17
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.15862
β’ PDF: https://arxiv.org/pdf/2510.15862
β’ Github: https://github.com/Pokee-AI/PokeeResearchOSS
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Is Multilingual LLM Watermarking Truly Multilingual? A Simple Back-Translation Solution
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18019
β’ PDF: https://arxiv.org/pdf/2510.18019
β’ Github: https://github.com/asimzz/steam
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18019
β’ PDF: https://arxiv.org/pdf/2510.18019
β’ Github: https://github.com/asimzz/steam
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
β€1
π€π§ Mastering Large Language Models: Top #1 Complete Guide to Maxime Labonneβs LLM Course
ποΈ 22 Oct 2025
π AI News & Trends
In the rapidly evolving landscape of artificial intelligence, large language models (LLMs) have become the foundation of modern AI innovation powering tools like ChatGPT, Claude, Gemini and countless enterprise AI applications. However, building, fine-tuning and deploying these models require deep technical understanding and hands-on expertise. To bridge this knowledge gap, Maxime Labonne, a leading AI ...
#LLM #ArtificialIntelligence #MachineLearning #DeepLearning #AIEngineering #LargeLanguageModels
ποΈ 22 Oct 2025
π AI News & Trends
In the rapidly evolving landscape of artificial intelligence, large language models (LLMs) have become the foundation of modern AI innovation powering tools like ChatGPT, Claude, Gemini and countless enterprise AI applications. However, building, fine-tuning and deploying these models require deep technical understanding and hands-on expertise. To bridge this knowledge gap, Maxime Labonne, a leading AI ...
#LLM #ArtificialIntelligence #MachineLearning #DeepLearning #AIEngineering #LargeLanguageModels
πΉ Title: GAS: Improving Discretization of Diffusion ODEs via Generalized Adversarial Solver
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17699
β’ PDF: https://arxiv.org/pdf/2510.17699
β’ Github: https://github.com/3145tttt/GAS
πΉ Datasets citing this paper:
β’ https://huggingface.co/datasets/bayes-group-diffusion/GAS-teachers
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17699
β’ PDF: https://arxiv.org/pdf/2510.17699
β’ Github: https://github.com/3145tttt/GAS
πΉ Datasets citing this paper:
β’ https://huggingface.co/datasets/bayes-group-diffusion/GAS-teachers
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
π€π§ Enhancing AI Agent Capabilities with Glean Agent Toolkit: A Complete Guide for Developers
ποΈ 22 Oct 2025
π AI News & Trends
The evolution of AI agents has transformed how businesses manage knowledge, automate workflows and deliver intelligent support. However, one major challenge remains how to effectively connect these AI agents to enterprise data and productivity tools. This is where the Glean Agent Toolkit steps in. Developed by Glean, a leader in enterprise knowledge discovery, this open-source ...
#AIAgents #GleanAgentToolkit #EnterpriseAI #ArtificialIntelligence #DeveloperTools #KnowledgeDiscovery
ποΈ 22 Oct 2025
π AI News & Trends
The evolution of AI agents has transformed how businesses manage knowledge, automate workflows and deliver intelligent support. However, one major challenge remains how to effectively connect these AI agents to enterprise data and productivity tools. This is where the Glean Agent Toolkit steps in. Developed by Glean, a leader in enterprise knowledge discovery, this open-source ...
#AIAgents #GleanAgentToolkit #EnterpriseAI #ArtificialIntelligence #DeveloperTools #KnowledgeDiscovery
πΉ Title: Think with 3D: Geometric Imagination Grounded Spatial Reasoning from Limited Views
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18632
β’ PDF: https://arxiv.org/pdf/2510.18632
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18632
β’ PDF: https://arxiv.org/pdf/2510.18632
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
π€π§ The Ultimate #1 Collection of AI Books In Awesome-AI-Books Repository
ποΈ 22 Oct 2025
π AI News & Trends
Artificial Intelligence (AI) has emerged as one of the most transformative technologies of the 21st century. From powering self-driving cars to enabling advanced conversational AI like ChatGPT, AI is redefining how humans interact with machines. However, mastering AI requires a strong foundation in theory, mathematics, programming and hands-on experimentation. For enthusiasts, students and professionals seeking ...
#ArtificialIntelligence #AIBooks #MachineLearning #DeepLearning #AIResources #TechBooks
ποΈ 22 Oct 2025
π AI News & Trends
Artificial Intelligence (AI) has emerged as one of the most transformative technologies of the 21st century. From powering self-driving cars to enabling advanced conversational AI like ChatGPT, AI is redefining how humans interact with machines. However, mastering AI requires a strong foundation in theory, mathematics, programming and hands-on experimentation. For enthusiasts, students and professionals seeking ...
#ArtificialIntelligence #AIBooks #MachineLearning #DeepLearning #AIResources #TechBooks