ML Research Hub
32.8K subscribers
4.32K photos
263 videos
23 files
4.66K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ”Ή Title: Chem-R: Learning to Reason as a Chemist

πŸ”Ή Publication Date: Published on Oct 19

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.16880
β€’ PDF: https://arxiv.org/pdf/2510.16880
β€’ Github: https://github.com/davidweidawang/Chem-R

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: UltraGen: High-Resolution Video Generation with Hierarchical Attention

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18775
β€’ PDF: https://arxiv.org/pdf/2510.18775
β€’ Project Page: https://sjtuplayer.github.io/projects/UltraGen/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: UniGenBench++: A Unified Semantic Evaluation Benchmark for Text-to-Image Generation

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18701
β€’ PDF: https://arxiv.org/pdf/2510.18701
β€’ Project Page: https://codegoat24.github.io/UniGenBench/
β€’ Github: https://github.com/CodeGoat24/UniGenBench

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: LightMem: Lightweight and Efficient Memory-Augmented Generation

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18866
β€’ PDF: https://arxiv.org/pdf/2510.18866
β€’ Github: https://github.com/zjunlp/LightMem

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Towards Faithful and Controllable Personalization via Critique-Post-Edit Reinforcement Learning

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18849
β€’ PDF: https://arxiv.org/pdf/2510.18849

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: ProCLIP: Progressive Vision-Language Alignment via LLM-based Embedder

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18795
β€’ PDF: https://arxiv.org/pdf/2510.18795

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: World-in-World: World Models in a Closed-Loop World

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18135
β€’ PDF: https://arxiv.org/pdf/2510.18135

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: MUG-V 10B: High-efficiency Training Pipeline for Large Video Generation Models

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.17519
β€’ PDF: https://arxiv.org/pdf/2510.17519
β€’ Project Page: https://github.com/Shopee-MUG/MUG-V
β€’ Github: https://github.com/Shopee-MUG/MUG-V

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Video Reasoning without Training

πŸ”Ή Publication Date: Published on Oct 19

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.17045
β€’ PDF: https://arxiv.org/pdf/2510.17045

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: ssToken: Self-modulated and Semantic-aware Token Selection for LLM Fine-tuning

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18250
β€’ PDF: https://arxiv.org/pdf/2510.18250

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: DSI-Bench: A Benchmark for Dynamic Spatial Intelligence

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18873
β€’ PDF: https://arxiv.org/pdf/2510.18873
β€’ Project Page: https://dsibench.github.io/
β€’ Github: https://github.com/SpatialVision/dsibench

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Unleashing Scientific Reasoning for Bio-experimental Protocol Generation via Structured Component-based Reward Mechanism

πŸ”Ή Publication Date: Published on Oct 17

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.15600
β€’ PDF: https://arxiv.org/pdf/2510.15600

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Mono4DGS-HDR: High Dynamic Range 4D Gaussian Splatting from Alternating-exposure Monocular Videos

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18489
β€’ PDF: https://arxiv.org/pdf/2510.18489
β€’ Project Page: https://liujf1226.github.io/Mono4DGS-HDR/
β€’ Github: https://github.com/LiuJF1226/Mono4DGS-HDR

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: EvoSyn: Generalizable Evolutionary Data Synthesis for Verifiable Learning

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.17928
β€’ PDF: https://arxiv.org/pdf/2510.17928
β€’ Github: https://github.com/kinza99/openevolve

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/Elynden/AgentBench-EvoSyn
β€’ https://huggingface.co/datasets/Elynden/LiveCodeBench-EvoSyn

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: AlphaQuanter: An End-to-End Tool-Orchestrated Agentic Reinforcement Learning Framework for Stock Trading

πŸ”Ή Publication Date: Published on Oct 16

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.14264
β€’ PDF: https://arxiv.org/pdf/2510.14264
β€’ Project Page: https://alphaquanter.github.io/
β€’ Github: https://github.com/AlphaQuanter/AlphaQuanter

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: PRISMM-Bench: A Benchmark of Peer-Review Grounded Multimodal Inconsistencies

πŸ”Ή Publication Date: Published on Oct 18

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.16505
β€’ PDF: https://arxiv.org/pdf/2510.16505
β€’ Github: https://github.com/da-luggas/prismm-bench

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Extracting alignment data in open models

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18554
β€’ PDF: https://arxiv.org/pdf/2510.18554

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: PokeeResearch: Effective Deep Research via Reinforcement Learning from AI Feedback and Robust Reasoning Scaffold

πŸ”Ή Publication Date: Published on Oct 17

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.15862
β€’ PDF: https://arxiv.org/pdf/2510.15862
β€’ Github: https://github.com/Pokee-AI/PokeeResearchOSS

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Is Multilingual LLM Watermarking Truly Multilingual? A Simple Back-Translation Solution

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18019
β€’ PDF: https://arxiv.org/pdf/2510.18019
β€’ Github: https://github.com/asimzz/steam

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ€–πŸ§  Mastering Large Language Models: Top #1 Complete Guide to Maxime Labonne’s LLM Course

πŸ—“οΈ 22 Oct 2025
πŸ“š AI News & Trends

In the rapidly evolving landscape of artificial intelligence, large language models (LLMs) have become the foundation of modern AI innovation powering tools like ChatGPT, Claude, Gemini and countless enterprise AI applications. However, building, fine-tuning and deploying these models require deep technical understanding and hands-on expertise. To bridge this knowledge gap, Maxime Labonne, a leading AI ...

#LLM #ArtificialIntelligence #MachineLearning #DeepLearning #AIEngineering #LargeLanguageModels
πŸ”Ή Title: GAS: Improving Discretization of Diffusion ODEs via Generalized Adversarial Solver

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.17699
β€’ PDF: https://arxiv.org/pdf/2510.17699
β€’ Github: https://github.com/3145tttt/GAS

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/bayes-group-diffusion/GAS-teachers

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT