πΉ Title: What Limits Agentic Systems Efficiency?
πΉ Publication Date: Published on Oct 18
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.16276
β’ PDF: https://arxiv.org/pdf/2510.16276
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 18
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.16276
β’ PDF: https://arxiv.org/pdf/2510.16276
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
β€2
π€π§ The Art of Scaling Reinforcement Learning Compute for LLMs: Top Insights from Meta, UT Austin and Harvard University
ποΈ 21 Oct 2025
π AI News & Trends
As Large Language Models (LLMs) continue to redefine artificial intelligence, a new research breakthrough has emerged from Meta, The University of Texas at Austin, University College London, UC Berkeley, Harvard University and Periodic Labs. Their paper, titled βThe Art of Scaling Reinforcement Learning Compute for LLMs,β introduces a transformative framework for understanding how reinforcement learning ...
#ReinforcementLearning #LLMs #AIResearch #Meta #UTAustin #HarvardUniversity
ποΈ 21 Oct 2025
π AI News & Trends
As Large Language Models (LLMs) continue to redefine artificial intelligence, a new research breakthrough has emerged from Meta, The University of Texas at Austin, University College London, UC Berkeley, Harvard University and Periodic Labs. Their paper, titled βThe Art of Scaling Reinforcement Learning Compute for LLMs,β introduces a transformative framework for understanding how reinforcement learning ...
#ReinforcementLearning #LLMs #AIResearch #Meta #UTAustin #HarvardUniversity
π€π§ Master Machine Learning with Stanfordβs CS229 Cheatsheets: The Ultimate Learning Resource
ποΈ 21 Oct 2025
π AI News & Trends
Machine learning is one of the most transformative fields in technology today. From powering recommendation systems to enabling self-driving cars, machine learning is at the core of modern artificial intelligence. However, mastering its vast concepts, equations and algorithms can be overwhelming especially for beginners and busy professionals. Thatβs where the Stanford CS229 Machine Learning Cheatsheets ...
ποΈ 21 Oct 2025
π AI News & Trends
Machine learning is one of the most transformative fields in technology today. From powering recommendation systems to enabling self-driving cars, machine learning is at the core of modern artificial intelligence. However, mastering its vast concepts, equations and algorithms can be overwhelming especially for beginners and busy professionals. Thatβs where the Stanford CS229 Machine Learning Cheatsheets ...
πΉ Title: TrajSelector: Harnessing Latent Representations for Efficient and Effective Best-of-N in Large Reasoning Model
πΉ Publication Date: Published on Oct 18
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.16449
β’ PDF: https://arxiv.org/pdf/2510.16449
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 18
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.16449
β’ PDF: https://arxiv.org/pdf/2510.16449
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: AION-1: Omnimodal Foundation Model for Astronomical Sciences
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17960
β’ PDF: https://arxiv.org/pdf/2510.17960
β’ Github: https://github.com/PolymathicAI/AION
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17960
β’ PDF: https://arxiv.org/pdf/2510.17960
β’ Github: https://github.com/PolymathicAI/AION
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: MoReBench: Evaluating Procedural and Pluralistic Moral Reasoning in Language Models, More than Outcomes
πΉ Publication Date: Published on Oct 18
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.16380
β’ PDF: https://arxiv.org/pdf/2510.16380
β’ Project Page: https://morebench.github.io/
β’ Github: https://github.com/morebench/morebench
πΉ Datasets citing this paper:
β’ https://huggingface.co/datasets/morebench/morebench
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 18
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.16380
β’ PDF: https://arxiv.org/pdf/2510.16380
β’ Project Page: https://morebench.github.io/
β’ Github: https://github.com/morebench/morebench
πΉ Datasets citing this paper:
β’ https://huggingface.co/datasets/morebench/morebench
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Grasp Any Region: Towards Precise, Contextual Pixel Understanding for Multimodal LLMs
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18876
β’ PDF: https://arxiv.org/pdf/2510.18876
β’ Github: https://github.com/Haochen-Wang409/Grasp-Any-Region
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18876
β’ PDF: https://arxiv.org/pdf/2510.18876
β’ Github: https://github.com/Haochen-Wang409/Grasp-Any-Region
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Every Step Evolves: Scaling Reinforcement Learning for Trillion-Scale Thinking Model
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18855
β’ PDF: https://arxiv.org/pdf/2510.18855
β’ Github: https://github.com/inclusionAI/Ring-V2
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18855
β’ PDF: https://arxiv.org/pdf/2510.18855
β’ Github: https://github.com/inclusionAI/Ring-V2
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: IF-VidCap: Can Video Caption Models Follow Instructions?
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18726
β’ PDF: https://arxiv.org/pdf/2510.18726
β’ Project Page: https://if-vidcap.github.io/
β’ Github: https://github.com/NJU-LINK/IF-VidCap
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18726
β’ PDF: https://arxiv.org/pdf/2510.18726
β’ Project Page: https://if-vidcap.github.io/
β’ Github: https://github.com/NJU-LINK/IF-VidCap
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: MoGA: Mixture-of-Groups Attention for End-to-End Long Video Generation
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18692
β’ PDF: https://arxiv.org/pdf/2510.18692
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18692
β’ PDF: https://arxiv.org/pdf/2510.18692
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: MT-Video-Bench: A Holistic Video Understanding Benchmark for Evaluating Multimodal LLMs in Multi-Turn Dialogues
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17722
β’ PDF: https://arxiv.org/pdf/2510.17722
β’ Project Page: https://mt-video-bench.github.io/
β’ Github: https://github.com/NJU-LINK/MT-Video-Bench
πΉ Datasets citing this paper:
β’ https://huggingface.co/datasets/NJU-LINK/MT-Video-Bench
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17722
β’ PDF: https://arxiv.org/pdf/2510.17722
β’ Project Page: https://mt-video-bench.github.io/
β’ Github: https://github.com/NJU-LINK/MT-Video-Bench
πΉ Datasets citing this paper:
β’ https://huggingface.co/datasets/NJU-LINK/MT-Video-Bench
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Chem-R: Learning to Reason as a Chemist
πΉ Publication Date: Published on Oct 19
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.16880
β’ PDF: https://arxiv.org/pdf/2510.16880
β’ Github: https://github.com/davidweidawang/Chem-R
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 19
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.16880
β’ PDF: https://arxiv.org/pdf/2510.16880
β’ Github: https://github.com/davidweidawang/Chem-R
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: UltraGen: High-Resolution Video Generation with Hierarchical Attention
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18775
β’ PDF: https://arxiv.org/pdf/2510.18775
β’ Project Page: https://sjtuplayer.github.io/projects/UltraGen/
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18775
β’ PDF: https://arxiv.org/pdf/2510.18775
β’ Project Page: https://sjtuplayer.github.io/projects/UltraGen/
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: UniGenBench++: A Unified Semantic Evaluation Benchmark for Text-to-Image Generation
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18701
β’ PDF: https://arxiv.org/pdf/2510.18701
β’ Project Page: https://codegoat24.github.io/UniGenBench/
β’ Github: https://github.com/CodeGoat24/UniGenBench
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18701
β’ PDF: https://arxiv.org/pdf/2510.18701
β’ Project Page: https://codegoat24.github.io/UniGenBench/
β’ Github: https://github.com/CodeGoat24/UniGenBench
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: LightMem: Lightweight and Efficient Memory-Augmented Generation
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18866
β’ PDF: https://arxiv.org/pdf/2510.18866
β’ Github: https://github.com/zjunlp/LightMem
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18866
β’ PDF: https://arxiv.org/pdf/2510.18866
β’ Github: https://github.com/zjunlp/LightMem
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Towards Faithful and Controllable Personalization via Critique-Post-Edit Reinforcement Learning
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18849
β’ PDF: https://arxiv.org/pdf/2510.18849
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18849
β’ PDF: https://arxiv.org/pdf/2510.18849
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: ProCLIP: Progressive Vision-Language Alignment via LLM-based Embedder
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18795
β’ PDF: https://arxiv.org/pdf/2510.18795
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18795
β’ PDF: https://arxiv.org/pdf/2510.18795
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: World-in-World: World Models in a Closed-Loop World
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18135
β’ PDF: https://arxiv.org/pdf/2510.18135
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18135
β’ PDF: https://arxiv.org/pdf/2510.18135
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: MUG-V 10B: High-efficiency Training Pipeline for Large Video Generation Models
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17519
β’ PDF: https://arxiv.org/pdf/2510.17519
β’ Project Page: https://github.com/Shopee-MUG/MUG-V
β’ Github: https://github.com/Shopee-MUG/MUG-V
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17519
β’ PDF: https://arxiv.org/pdf/2510.17519
β’ Project Page: https://github.com/Shopee-MUG/MUG-V
β’ Github: https://github.com/Shopee-MUG/MUG-V
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Video Reasoning without Training
πΉ Publication Date: Published on Oct 19
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17045
β’ PDF: https://arxiv.org/pdf/2510.17045
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 19
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17045
β’ PDF: https://arxiv.org/pdf/2510.17045
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: ssToken: Self-modulated and Semantic-aware Token Selection for LLM Fine-tuning
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18250
β’ PDF: https://arxiv.org/pdf/2510.18250
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 21
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18250
β’ PDF: https://arxiv.org/pdf/2510.18250
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT