ML Research Hub
32.8K subscribers
4.32K photos
263 videos
23 files
4.67K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ”Ή Title: What Limits Agentic Systems Efficiency?

πŸ”Ή Publication Date: Published on Oct 18

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.16276
β€’ PDF: https://arxiv.org/pdf/2510.16276

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀2
πŸ€–πŸ§  The Art of Scaling Reinforcement Learning Compute for LLMs: Top Insights from Meta, UT Austin and Harvard University

πŸ—“οΈ 21 Oct 2025
πŸ“š AI News & Trends

As Large Language Models (LLMs) continue to redefine artificial intelligence, a new research breakthrough has emerged from Meta, The University of Texas at Austin, University College London, UC Berkeley, Harvard University and Periodic Labs. Their paper, titled β€œThe Art of Scaling Reinforcement Learning Compute for LLMs,” introduces a transformative framework for understanding how reinforcement learning ...

#ReinforcementLearning #LLMs #AIResearch #Meta #UTAustin #HarvardUniversity
πŸ€–πŸ§  Master Machine Learning with Stanford’s CS229 Cheatsheets: The Ultimate Learning Resource

πŸ—“οΈ 21 Oct 2025
πŸ“š AI News & Trends

Machine learning is one of the most transformative fields in technology today. From powering recommendation systems to enabling self-driving cars, machine learning is at the core of modern artificial intelligence. However, mastering its vast concepts, equations and algorithms can be overwhelming especially for beginners and busy professionals. That’s where the Stanford CS229 Machine Learning Cheatsheets ...
πŸ”Ή Title: TrajSelector: Harnessing Latent Representations for Efficient and Effective Best-of-N in Large Reasoning Model

πŸ”Ή Publication Date: Published on Oct 18

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.16449
β€’ PDF: https://arxiv.org/pdf/2510.16449

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: AION-1: Omnimodal Foundation Model for Astronomical Sciences

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.17960
β€’ PDF: https://arxiv.org/pdf/2510.17960
β€’ Github: https://github.com/PolymathicAI/AION

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: MoReBench: Evaluating Procedural and Pluralistic Moral Reasoning in Language Models, More than Outcomes

πŸ”Ή Publication Date: Published on Oct 18

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.16380
β€’ PDF: https://arxiv.org/pdf/2510.16380
β€’ Project Page: https://morebench.github.io/
β€’ Github: https://github.com/morebench/morebench

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/morebench/morebench

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Grasp Any Region: Towards Precise, Contextual Pixel Understanding for Multimodal LLMs

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18876
β€’ PDF: https://arxiv.org/pdf/2510.18876
β€’ Github: https://github.com/Haochen-Wang409/Grasp-Any-Region

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Every Step Evolves: Scaling Reinforcement Learning for Trillion-Scale Thinking Model

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18855
β€’ PDF: https://arxiv.org/pdf/2510.18855
β€’ Github: https://github.com/inclusionAI/Ring-V2

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: IF-VidCap: Can Video Caption Models Follow Instructions?

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18726
β€’ PDF: https://arxiv.org/pdf/2510.18726
β€’ Project Page: https://if-vidcap.github.io/
β€’ Github: https://github.com/NJU-LINK/IF-VidCap

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: MoGA: Mixture-of-Groups Attention for End-to-End Long Video Generation

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18692
β€’ PDF: https://arxiv.org/pdf/2510.18692

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: MT-Video-Bench: A Holistic Video Understanding Benchmark for Evaluating Multimodal LLMs in Multi-Turn Dialogues

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.17722
β€’ PDF: https://arxiv.org/pdf/2510.17722
β€’ Project Page: https://mt-video-bench.github.io/
β€’ Github: https://github.com/NJU-LINK/MT-Video-Bench

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/NJU-LINK/MT-Video-Bench

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Chem-R: Learning to Reason as a Chemist

πŸ”Ή Publication Date: Published on Oct 19

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.16880
β€’ PDF: https://arxiv.org/pdf/2510.16880
β€’ Github: https://github.com/davidweidawang/Chem-R

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: UltraGen: High-Resolution Video Generation with Hierarchical Attention

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18775
β€’ PDF: https://arxiv.org/pdf/2510.18775
β€’ Project Page: https://sjtuplayer.github.io/projects/UltraGen/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: UniGenBench++: A Unified Semantic Evaluation Benchmark for Text-to-Image Generation

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18701
β€’ PDF: https://arxiv.org/pdf/2510.18701
β€’ Project Page: https://codegoat24.github.io/UniGenBench/
β€’ Github: https://github.com/CodeGoat24/UniGenBench

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: LightMem: Lightweight and Efficient Memory-Augmented Generation

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18866
β€’ PDF: https://arxiv.org/pdf/2510.18866
β€’ Github: https://github.com/zjunlp/LightMem

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Towards Faithful and Controllable Personalization via Critique-Post-Edit Reinforcement Learning

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18849
β€’ PDF: https://arxiv.org/pdf/2510.18849

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: ProCLIP: Progressive Vision-Language Alignment via LLM-based Embedder

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18795
β€’ PDF: https://arxiv.org/pdf/2510.18795

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: World-in-World: World Models in a Closed-Loop World

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18135
β€’ PDF: https://arxiv.org/pdf/2510.18135

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: MUG-V 10B: High-efficiency Training Pipeline for Large Video Generation Models

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.17519
β€’ PDF: https://arxiv.org/pdf/2510.17519
β€’ Project Page: https://github.com/Shopee-MUG/MUG-V
β€’ Github: https://github.com/Shopee-MUG/MUG-V

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Video Reasoning without Training

πŸ”Ή Publication Date: Published on Oct 19

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.17045
β€’ PDF: https://arxiv.org/pdf/2510.17045

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: ssToken: Self-modulated and Semantic-aware Token Selection for LLM Fine-tuning

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18250
β€’ PDF: https://arxiv.org/pdf/2510.18250

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT