đš Title: PICABench: How Far Are We from Physically Realistic Image Editing?
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17681
⢠PDF: https://arxiv.org/pdf/2510.17681
⢠Project Page: https://picabench.github.io/
⢠Github: https://picabench.github.io/
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17681
⢠PDF: https://arxiv.org/pdf/2510.17681
⢠Project Page: https://picabench.github.io/
⢠Github: https://picabench.github.io/
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: Executable Knowledge Graphs for Replicating AI Research
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17795
⢠PDF: https://arxiv.org/pdf/2510.17795
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17795
⢠PDF: https://arxiv.org/pdf/2510.17795
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: ConsistEdit: Highly Consistent and Precise Training-free Visual Editing
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17803
⢠PDF: https://arxiv.org/pdf/2510.17803
⢠Project Page: https://zxyin.github.io/ConsistEdit
⢠Github: https://github.com/zxYin/ConsistEdit_Code
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17803
⢠PDF: https://arxiv.org/pdf/2510.17803
⢠Project Page: https://zxyin.github.io/ConsistEdit
⢠Github: https://github.com/zxYin/ConsistEdit_Code
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: Distractor Injection Attacks on Large Reasoning Models: Characterization and Defense
đš Publication Date: Published on Oct 17
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.16259
⢠PDF: https://arxiv.org/pdf/2510.16259
đš Datasets citing this paper:
⢠https://huggingface.co/datasets/groupfairnessllm/tulu-3-preference-data-with-distraction
⢠https://huggingface.co/datasets/groupfairnessllm/tulu-3-sft-personas-instruction-following-with-distraction
⢠https://huggingface.co/datasets/groupfairnessllm/tulu-3-preference-personas-math-with-distraction
⢠https://huggingface.co/datasets/groupfairnessllm/tulu-3-preference-personas-instruction-following-with-distraction
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 17
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.16259
⢠PDF: https://arxiv.org/pdf/2510.16259
đš Datasets citing this paper:
⢠https://huggingface.co/datasets/groupfairnessllm/tulu-3-preference-data-with-distraction
⢠https://huggingface.co/datasets/groupfairnessllm/tulu-3-sft-personas-instruction-following-with-distraction
⢠https://huggingface.co/datasets/groupfairnessllm/tulu-3-preference-personas-math-with-distraction
⢠https://huggingface.co/datasets/groupfairnessllm/tulu-3-preference-personas-instruction-following-with-distraction
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: FineVision: Open Data Is All You Need
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17269
⢠PDF: https://arxiv.org/pdf/2510.17269
⢠Project Page: https://huggingface.co/spaces/HuggingFaceM4/FineVision
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17269
⢠PDF: https://arxiv.org/pdf/2510.17269
⢠Project Page: https://huggingface.co/spaces/HuggingFaceM4/FineVision
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: Visual Autoregressive Models Beat Diffusion Models on Inference Time Scaling
đš Publication Date: Published on Oct 19
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.16751
⢠PDF: https://arxiv.org/pdf/2510.16751
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 19
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.16751
⢠PDF: https://arxiv.org/pdf/2510.16751
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: Beyond Pipelines: A Survey of the Paradigm Shift toward Model-Native Agentic AI
đš Publication Date: Published on Oct 19
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.16720
⢠PDF: https://arxiv.org/pdf/2510.16720
⢠Project Page: https://github.com/ADaM-BJTU/model-native-agentic-ai
⢠Github: https://github.com/ADaM-BJTU/model-native-agentic-ai
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 19
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.16720
⢠PDF: https://arxiv.org/pdf/2510.16720
⢠Project Page: https://github.com/ADaM-BJTU/model-native-agentic-ai
⢠Github: https://github.com/ADaM-BJTU/model-native-agentic-ai
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: Enterprise Deep Research: Steerable Multi-Agent Deep Research for Enterprise Analytics
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17797
⢠PDF: https://arxiv.org/pdf/2510.17797
⢠Github: https://huggingface.co/papers?q=github
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17797
⢠PDF: https://arxiv.org/pdf/2510.17797
⢠Github: https://huggingface.co/papers?q=github
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: Deep Self-Evolving Reasoning
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17498
⢠PDF: https://arxiv.org/pdf/2510.17498
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17498
⢠PDF: https://arxiv.org/pdf/2510.17498
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: Balanced Multi-Task Attention for Satellite Image Classification: A Systematic Approach to Achieving 97.23% Accuracy on EuroSAT Without Pre-Training
đš Publication Date: Published on Oct 17
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.15527
⢠PDF: https://arxiv.org/pdf/2510.15527
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 17
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.15527
⢠PDF: https://arxiv.org/pdf/2510.15527
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: Knowledge-based Visual Question Answer with Multimodal Processing, Retrieval and Filtering
đš Publication Date: Published on Oct 16
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.14605
⢠PDF: https://arxiv.org/pdf/2510.14605
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 16
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.14605
⢠PDF: https://arxiv.org/pdf/2510.14605
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: AsyncVoice Agent: Real-Time Explanation for LLM Planning and Reasoning
đš Publication Date: Published on Oct 17
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.16156
⢠PDF: https://arxiv.org/pdf/2510.16156
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 17
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.16156
⢠PDF: https://arxiv.org/pdf/2510.16156
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: Glyph: Scaling Context Windows via Visual-Text Compression
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17800
⢠PDF: https://arxiv.org/pdf/2510.17800
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17800
⢠PDF: https://arxiv.org/pdf/2510.17800
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: Uniworld-V2: Reinforce Image Editing with Diffusion Negative-aware Finetuning and MLLM Implicit Feedback
đš Publication Date: Published on Oct 19
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.16888
⢠PDF: https://arxiv.org/pdf/2510.16888
⢠Github: https://github.com/PKU-YuanGroup/UniWorld-V2
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 19
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.16888
⢠PDF: https://arxiv.org/pdf/2510.16888
⢠Github: https://github.com/PKU-YuanGroup/UniWorld-V2
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: Annotation-Efficient Universal Honesty Alignment
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17509
⢠PDF: https://arxiv.org/pdf/2510.17509
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17509
⢠PDF: https://arxiv.org/pdf/2510.17509
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: RL makes MLLMs see better than SFT
đš Publication Date: Published on Oct 18
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.16333
⢠PDF: https://arxiv.org/pdf/2510.16333
⢠Project Page: https://june-page.github.io/pivot/
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 18
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.16333
⢠PDF: https://arxiv.org/pdf/2510.16333
⢠Project Page: https://june-page.github.io/pivot/
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: UltraCUA: A Foundation Model for Computer Use Agents with Hybrid Action
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17790
⢠PDF: https://arxiv.org/pdf/2510.17790
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17790
⢠PDF: https://arxiv.org/pdf/2510.17790
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: Embody 3D: A Large-scale Multimodal Motion and Behavior Dataset
đš Publication Date: Published on Oct 17
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.16258
⢠PDF: https://arxiv.org/pdf/2510.16258
⢠Project Page: https://www.meta.com/emerging-tech/codec-avatars/embody-3d/
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 17
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.16258
⢠PDF: https://arxiv.org/pdf/2510.16258
⢠Project Page: https://www.meta.com/emerging-tech/codec-avatars/embody-3d/
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
â¤1
đš Title: When to Ensemble: Identifying Token-Level Points for Stable and Fast LLM Ensembling
đš Publication Date: Published on Oct 17
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.15346
⢠PDF: https://arxiv.org/pdf/2510.15346
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 17
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.15346
⢠PDF: https://arxiv.org/pdf/2510.15346
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: Constantly Improving Image Models Need Constantly Improving Benchmarks
đš Publication Date: Published on Oct 16
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.15021
⢠PDF: https://arxiv.org/pdf/2510.15021
⢠Project Page: https://echo-bench.github.io/
⢠Github: https://github.com/para-lost/ECHO
đš Datasets citing this paper:
⢠https://huggingface.co/datasets/echo-bench/echo2025
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 16
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.15021
⢠PDF: https://arxiv.org/pdf/2510.15021
⢠Project Page: https://echo-bench.github.io/
⢠Github: https://github.com/para-lost/ECHO
đš Datasets citing this paper:
⢠https://huggingface.co/datasets/echo-bench/echo2025
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Title: Foundational Automatic Evaluators: Scaling Multi-Task Generative Evaluator Training for Reasoning-Centric Domains
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17793
⢠PDF: https://arxiv.org/pdf/2510.17793
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
đš Publication Date: Published on Oct 20
đš Paper Links:
⢠arXiv Page: https://arxiv.org/abs/2510.17793
⢠PDF: https://arxiv.org/pdf/2510.17793
đš Datasets citing this paper:
No datasets found
đš Spaces citing this paper:
No spaces found
==================================
For more data science resources:
â https://t.me/DataScienceT
â¤1