ML Research Hub
32.9K subscribers
4.45K photos
273 videos
23 files
4.81K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ”Ή Title: The Attacker Moves Second: Stronger Adaptive Attacks Bypass Defenses Against Llm Jailbreaks and Prompt Injections

πŸ”Ή Publication Date: Published on Oct 10

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.09023
β€’ PDF: https://arxiv.org/pdf/2510.09023

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: MultiCOIN: Multi-Modal COntrollable Video INbetweening

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.08561
β€’ PDF: https://arxiv.org/pdf/2510.08561

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: oMeBench: Towards Robust Benchmarking of LLMs in Organic Mechanism Elucidation and Reasoning

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.07731
β€’ PDF: https://arxiv.org/pdf/2510.07731
β€’ Github: https://github.com/skylarkie/oMeBench

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: VLM-Guided Adaptive Negative Prompting for Creative Generation

πŸ”Ή Publication Date: Published on Oct 12

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.10715
β€’ PDF: https://arxiv.org/pdf/2510.10715
β€’ Github: https://shelley-golan.github.io/VLM-Guided-Creative-Generation/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ€–πŸ§  Thinking with Camera 2.0: A Powerful Multimodal Model for Camera-Centric Understanding and Generation

πŸ—“οΈ 14 Oct 2025
πŸ“š AI News & Trends

In the rapidly evolving field of multimodal AI, bridging gaps between vision, language and geometry is one of the frontier challenges. Traditional vision-language models excel at describing what is in an image β€œa cat on a sofa” β€œa red car on the road” but struggle to reason about how the image was captured: the camera’s ...

#MultimodalAI #CameraCentricUnderstanding #VisionLanguageModels #AIResearch #ComputerVision #GenerativeModels
πŸ€–πŸ§  Granite-Speech-3.3-8B: IBM’s Next-Gen Speech-Language Model for Enterprise AI

πŸ—“οΈ 14 Oct 2025
πŸ“š AI News & Trends

In the fast-growing field of speech and language AI, IBM continues to make strides with its Granite model family , a suite of open enterprise-grade AI models that combine accuracy, safety and efficiency. The latest addition to this ecosystem, Granite-Speech-3.3-8B marks a significant milestone in automatic speech recognition (ASR) and speech translation (AST) technology. Released ...

#SpeechAI #LanguageModel #EnterpriseAI #ASR #SpeechTranslation #GraniteModel
πŸ€–πŸ§  LLaMAX2 by Nanjing University, HKU, CMU & Shanghai AI Lab: A Breakthrough in Translation-Enhanced Reasoning Models

πŸ—“οΈ 14 Oct 2025
πŸ“š AI News & Trends

The world of large language models (LLMs) has evolved rapidly, producing advanced systems capable of reasoning, problem-solving, and creative text generation. However, a persistent challenge has been balancing translation quality with reasoning ability. Most translation-enhanced models excel in linguistic diversity but falter in logical reasoning or coding tasks. Addressing this crucial gap, the research paper ...

#LLaMAX2 #TranslationEnhanced #ReasoningModels #LargeLanguageModels #NanjingUniversity #HKU
πŸ€–πŸ§  Diffusion Transformers with Representation Autoencoders (RAE): The Next Leap in Generative AI

πŸ—“οΈ 14 Oct 2025
πŸ“š AI News & Trends

Diffusion Transformers (DiTs) have revolutionized image and video generation enabling stunningly realistic outputs in systems like Stable Diffusion and Imagen. However, despite innovations in transformer architectures and training methods, one crucial element of the diffusion pipeline has remained largely stagnant- the autoencoder that defines the latent space. Most current diffusion models still depend on Variational ...

#DiffusionTransformers #RAE #GenerativeAI #StableDiffusion #Imagen #LatentSpace
πŸ”Ή Title: FlashVSR: Towards Real-Time Diffusion-Based Streaming Video Super-Resolution

πŸ”Ή Publication Date: Published on Oct 14

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.12747
β€’ PDF: https://arxiv.org/pdf/2510.12747
β€’ Project Page: https://zhuang2002.github.io/FlashVSR/
β€’ Github: https://github.com/OpenImagingLab/FlashVSR

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Memory as Action: Autonomous Context Curation for Long-Horizon Agentic Tasks

πŸ”Ή Publication Date: Published on Oct 14

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.12635
β€’ PDF: https://arxiv.org/pdf/2510.12635

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Advancing End-to-End Pixel Space Generative Modeling via Self-supervised Pre-training

πŸ”Ή Publication Date: Published on Oct 14

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.12586
β€’ PDF: https://arxiv.org/pdf/2510.12586
β€’ Github: https://github.com/AMAP-ML/EPG

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: LLM Reasoning for Machine Translation: Synthetic Data Generation over Thinking Tokens

πŸ”Ή Publication Date: Published on Oct 13

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.11919
β€’ PDF: https://arxiv.org/pdf/2510.11919
β€’ Github: https://github.com/ArmelRandy/llm-reasoning-mt

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: DeepMMSearch-R1: Empowering Multimodal LLMs in Multimodal Web Search

πŸ”Ή Publication Date: Published on Oct 14

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.12801
β€’ PDF: https://arxiv.org/pdf/2510.12801

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Detect Anything via Next Point Prediction

πŸ”Ή Publication Date: Published on Oct 14

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.12798
β€’ PDF: https://arxiv.org/pdf/2510.12798
β€’ Project Page: https://rex-omni.github.io/
β€’ Github: https://github.com/IDEA-Research/Rex-Omni

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: UniFusion: Vision-Language Model as Unified Encoder in Image Generation

πŸ”Ή Publication Date: Published on Oct 14

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.12789
β€’ PDF: https://arxiv.org/pdf/2510.12789
β€’ Project Page: https://thekevinli.github.io/unifusion/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: DITING: A Multi-Agent Evaluation Framework for Benchmarking Web Novel Translation

πŸ”Ή Publication Date: Published on Oct 10

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.09116
β€’ PDF: https://arxiv.org/pdf/2510.09116
β€’ Github: https://github.com/WHUNextGen/DITING

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/NextGenWhu/DITING

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Scaling Language-Centric Omnimodal Representation Learning

πŸ”Ή Publication Date: Published on Oct 13

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.11693
β€’ PDF: https://arxiv.org/pdf/2510.11693
β€’ Project Page: https://huggingface.co/LCO-Embedding
β€’ Github: https://github.com/LCO-Embedding/LCO-Embedding

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: A Survey of Vibe Coding with Large Language Models

πŸ”Ή Publication Date: Published on Oct 14

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.12399
β€’ PDF: https://arxiv.org/pdf/2510.12399
β€’ Github: https://github.com/YuyaoGe/Awesome-Vibe-Coding

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: ERA: Transforming VLMs into Embodied Agents via Embodied Prior Learning and Online Reinforcement Learning

πŸ”Ή Publication Date: Published on Oct 14

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.12693
β€’ PDF: https://arxiv.org/pdf/2510.12693
β€’ Project Page: https://embodied-reasoning-agent.github.io
β€’ Github: https://embodied-reasoning-agent.github.io

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Boundary-Guided Policy Optimization for Memory-efficient RL of Diffusion Large Language Models

πŸ”Ή Publication Date: Published on Oct 13

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/pdf/2510.11683
β€’ PDF: https://arxiv.org/pdf/2510.11683
β€’ Github: https://github.com/THU-KEG/BGPO

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: SRUM: Fine-Grained Self-Rewarding for Unified Multimodal Models

πŸ”Ή Publication Date: Published on Oct 14

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.12784
β€’ PDF: https://arxiv.org/pdf/2510.12784
β€’ Project Page: https://waynejin0918.github.io/srum_web/
β€’ Github: https://github.com/WayneJin0918/SRUM

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT