ML Research Hub
32.9K subscribers
4.47K photos
274 videos
23 files
4.83K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ”Ή Title: One Patch to Caption Them All: A Unified Zero-Shot Captioning Framework

πŸ”Ή Publication Date: Published on Oct 3

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.02898
β€’ PDF: https://arxiv.org/pdf/2510.02898
β€’ Project Page: https://paciosoft.com/Patch-ioner/
β€’ Github: https://github.com/Ruggero1912/Patch-ioner

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/Ruggero1912/Trace_Captioning_COCO
β€’ https://huggingface.co/datasets/Ruggero1912/Trace_Captioning_Flickr30K

πŸ”Ή Spaces citing this paper:
β€’ https://huggingface.co/spaces/Ruggero1912/Patch-ioner
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Better Together: Leveraging Unpaired Multimodal Data for Stronger Unimodal Models

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.08492
β€’ PDF: https://arxiv.org/pdf/2510.08492
β€’ Project Page: https://unpaired-multimodal.github.io/
β€’ Github: https://github.com/Sharut/Unpaired-Multimodal-Learning/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: Bridging Reasoning to Learning: Unmasking Illusions using Complexity Out of Distribution Generalization

πŸ”Ή Publication Date: Published on Oct 6

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.06274
β€’ PDF: https://arxiv.org/pdf/2510.06274

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Adaptive Attacks on Trusted Monitors Subvert AI Control Protocols

πŸ”Ή Publication Date: Published on Oct 10

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.09462
β€’ PDF: https://arxiv.org/pdf/2510.09462

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: KORMo: Korean Open Reasoning Model for Everyone

πŸ”Ή Publication Date: Published on Oct 10

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.09426
β€’ PDF: https://arxiv.org/pdf/2510.09426

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/KORMo-Team/IF-bilingual-sft
β€’ https://huggingface.co/datasets/KORMo-Team/Cosmopedia-ko-synth
β€’ https://huggingface.co/datasets/KORMo-Team/UltraFineWeb-ko-synth
β€’ https://huggingface.co/datasets/KORMo-Team/OpenCodeReasoning-ko-synth

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Which Heads Matter for Reasoning? RL-Guided KV Cache Compression

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.08525
β€’ PDF: https://arxiv.org/pdf/2510.08525

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Hybrid-grained Feature Aggregation with Coarse-to-fine Language Guidance for Self-supervised Monocular Depth Estimation

πŸ”Ή Publication Date: Published on Oct 10

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/pdf/2510.09320%5D
β€’ PDF: https://arxiv.org/pdf/2510.09320
β€’ Github: https://github.com/Zhangwenyao1/Hybrid-depth%5D

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Formalizing Style in Personal Narratives

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.08649
β€’ PDF: https://arxiv.org/pdf/2510.08649

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: LLM4Cell: A Survey of Large Language and Agentic Models for Single-Cell Biology

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.07793
β€’ PDF: https://arxiv.org/pdf/2510.07793

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: ELMUR: External Layer Memory with Update/Rewrite for Long-Horizon RL

πŸ”Ή Publication Date: Published on Oct 8

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.07151
β€’ PDF: https://arxiv.org/pdf/2510.07151
β€’ Project Page: https://elmur-paper.github.io/
β€’ Github: https://github.com/CognitiveAISystems/RATE

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: LightReasoner: Can Small Language Models Teach Large Language Models Reasoning?

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.07962
β€’ PDF: https://arxiv.org/pdf/2510.07962

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: MONKEY: Masking ON KEY-Value Activation Adapter for Personalization

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.07656
β€’ PDF: https://arxiv.org/pdf/2510.07656

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ€–πŸ§  Ultimate OpenTSLM: Stanford’s Open-Source Framework Bridging LLMs and Medical Time-Series Data

πŸ—“οΈ 13 Oct 2025
πŸ“š AI News & Trends

In recent years, artificial intelligence (AI) has made remarkable strides in transforming healthcare. From medical imaging to patient monitoring systems, AI-driven solutions are reshaping how clinicians diagnose, treat and manage diseases. One of the most promising developments in this space is the integration of large language models (LLMs) with time-series data, a combination that holds ...

#OpenTSLM #LLMs #MedicalAI #TimeSeriesData #ArtificialIntelligence #OpenSourceFramework
πŸ”Ή Title: BEAR: Benchmarking and Enhancing Multimodal Language Models for Atomic Embodied Capabilities

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.08759
β€’ PDF: https://arxiv.org/pdf/2510.08759
β€’ Project Page: https://bear-official66.github.io/
β€’ Github: https://github.com/yqi19/BEAR-official

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: ARMOR: High-Performance Semi-Structured Pruning via Adaptive Matrix Factorization

πŸ”Ή Publication Date: Published on Oct 7

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.05528
β€’ PDF: https://arxiv.org/pdf/2510.05528

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: How to Teach Large Multimodal Models New Skills

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.08564
β€’ PDF: https://arxiv.org/pdf/2510.08564
β€’ Project Page: https://huggingface.co/papers?q=Down%20projection
β€’ Github: https://github.com/jessemelpolio/LMM_CL

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ™1
πŸ€–πŸ§  Jio AI Classroom: Learn Artificial Intelligence for Free with Jio Institute & JioPC App

πŸ—“οΈ 13 Oct 2025
πŸ“š AI News & Trends

Artificial Intelligence (AI) is redefining industries across the globe from healthcare to education, finance and beyond. But for millions of learners in India, access to high-quality AI education has often been limited by cost and technical barriers. Bridging this gap, Jio Institute in collaboration with JioPC App has launched a unique free online AI learning ...

#JioAIClassroom #ArtificialIntelligence #FreeAIEducation #JioInstitute #JioPCApp #AILearning
πŸ”Ή Title: FinAuditing: A Financial Taxonomy-Structured Multi-Document Benchmark for Evaluating LLMs

πŸ”Ή Publication Date: Published on Oct 10

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.08886
β€’ PDF: https://arxiv.org/pdf/2510.08886

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: AdaViewPlanner: Adapting Video Diffusion Models for Viewpoint Planning in 4D Scenes

πŸ”Ή Publication Date: Published on Oct 12

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.10670
β€’ PDF: https://arxiv.org/pdf/2510.10670
β€’ Project Page: https://yuli0103.github.io/AdaViewPlanner/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Self-Improving LLM Agents at Test-Time

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.07841
β€’ PDF: https://arxiv.org/pdf/2510.07841

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: PEAR: Phase Entropy Aware Reward for Efficient Reasoning

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.08026
β€’ PDF: https://arxiv.org/pdf/2510.08026
β€’ Github: https://github.com/iNLP-Lab/PEAR

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT