ML Research Hub
32.8K subscribers
4.35K photos
267 videos
23 files
4.7K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ”Ή Title: InstructX: Towards Unified Visual Editing with MLLM Guidance

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/pdf/2510.08485
β€’ PDF: https://arxiv.org/pdf/2510.08485
β€’ Project Page: https://mc-e.github.io/project/InstructX/
β€’ Github: https://github.com/MC-E/InstructX

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: From What to Why: A Multi-Agent System for Evidence-based Chemical Reaction Condition Reasoning

πŸ”Ή Publication Date: Published on Sep 28

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2509.23768
β€’ PDF: https://arxiv.org/pdf/2509.23768

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: MemMamba: Rethinking Memory Patterns in State Space Model

πŸ”Ή Publication Date: Published on Sep 28

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.03279
β€’ PDF: https://arxiv.org/pdf/2510.03279

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Towards Scalable and Consistent 3D Editing

πŸ”Ή Publication Date: Published on Oct 3

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.02994
β€’ PDF: https://arxiv.org/pdf/2510.02994
β€’ Project Page: https://www.lv-lab.org/3DEditFormer/
β€’ Github: https://github.com/LVLab-SMU/3DEditFormer

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: CoMAS: Co-Evolving Multi-Agent Systems via Interaction Rewards

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.08529
β€’ PDF: https://arxiv.org/pdf/2510.08529
β€’ Github: https://github.com/xxyQwQ/CoMAS

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: Learning on the Job: An Experience-Driven Self-Evolving Agent for Long-Horizon Tasks

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.08002
β€’ PDF: https://arxiv.org/pdf/2510.08002

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Memory Retrieval and Consolidation in Large Language Models through Function Tokens

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.08203
β€’ PDF: https://arxiv.org/pdf/2510.08203

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Fidelity-Aware Data Composition for Robust Robot Generalization

πŸ”Ή Publication Date: Published on Sep 29

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2509.24797
β€’ PDF: https://arxiv.org/pdf/2509.24797

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Beyond Outliers: A Study of Optimizers Under Quantization

πŸ”Ή Publication Date: Published on Sep 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2509.23500
β€’ PDF: https://arxiv.org/pdf/2509.23500

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Taming Text-to-Sounding Video Generation via Advanced Modality Condition and Interaction

πŸ”Ή Publication Date: Published on Oct 3

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.03117
β€’ PDF: https://arxiv.org/pdf/2510.03117
β€’ Project Page: https://bridgedit-t2sv.github.io/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: Search-R3: Unifying Reasoning and Embedding Generation in Large Language Models

πŸ”Ή Publication Date: Published on Oct 8

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.07048
β€’ PDF: https://arxiv.org/pdf/2510.07048
β€’ Github: https://github.com/ytgui/Search-R3

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: GCPO: When Contrast Fails, Go Gold

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.07790
β€’ PDF: https://arxiv.org/pdf/2510.07790
β€’ Github: https://github.com/AchoWu/GCPO

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: SViM3D: Stable Video Material Diffusion for Single Image 3D Generation

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.08271
β€’ PDF: https://arxiv.org/pdf/2510.08271

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: GyroSwin: 5D Surrogates for Gyrokinetic Plasma Turbulence Simulations

πŸ”Ή Publication Date: Published on Oct 8

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.07314
β€’ PDF: https://arxiv.org/pdf/2510.07314

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Drive&Gen: Co-Evaluating End-to-End Driving and Video Generation Models

πŸ”Ή Publication Date: Published on Oct 7

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.06209
β€’ PDF: https://arxiv.org/pdf/2510.06209

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: OmniRetarget: Interaction-Preserving Data Generation for Humanoid Whole-Body Loco-Manipulation and Scene Interaction

πŸ”Ή Publication Date: Published on Sep 30

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2509.26633
β€’ PDF: https://arxiv.org/pdf/2509.26633
β€’ Project Page: https://omniretarget.github.io/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: DreamOmni2: Multimodal Instruction-based Editing and Generation

πŸ”Ή Publication Date: Published on Oct 8

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.06679
β€’ PDF: https://arxiv.org/pdf/2510.06679
β€’ Project Page: https://pbihao.github.io/projects/DreamOmni2/index.html
β€’ Github: https://github.com/dvlab-research/DreamOmni2

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Use the Online Network If You Can: Towards Fast and Stable Reinforcement Learning

πŸ”Ή Publication Date: Published on Oct 2

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.02590
β€’ PDF: https://arxiv.org/pdf/2510.02590

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: OpenRubrics: Towards Scalable Synthetic Rubric Generation for Reward Modeling and LLM Alignment

πŸ”Ή Publication Date: Published on Oct 9

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.07743
β€’ PDF: https://arxiv.org/pdf/2510.07743

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ€–πŸ§  Join the 5-Day AI Agents Intensive Course with Google

πŸ—“οΈ 07 Oct 2025
πŸ“š AI News & Trends

Artificial Intelligence is rapidly evolving beyond chatbots and text generation. The next frontier is AI agents β€” intelligent, autonomous systems that can reason, take action and collaborate with tools and other agents. To help developers and practitioners build these next-generation systems, Google is launching the 5-Day AI Agents Intensive, a no-cost, online program running from ...

#aiagents #dayai #googleartificial #agentsintelligent #ai #evolvingchatbots
❀1
πŸ€–πŸ§  Cognee: Powerful Memory for AI Agents in Just 6 Lines of Code

πŸ—“οΈ 07 Oct 2025
πŸ“š AI News & Trends

Artificial Intelligence is evolving rapidly, but one of the biggest challenges for developers is building agents that remember, reason and adapt. Traditional RAG (Retrieval-Augmented Generation) systems often fall short when handling context, scalability and precision. That’s where Cognee comes in. It is an open-source framework designed to provide AI agents with memory using a unique ...

#AI #Memory #AIAgents #OpenSource #RAG #ArtificialIntelligence
❀4