ML Research Hub
32.9K subscribers
4.72K photos
291 videos
24 files
5.1K links
Advancing research in Machine Learning โ€“ practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
Forwarded from ENG. Hussein Sheikho
๐Ÿ” Searching for fast, reliable proxies for your data science and machine learning projects?
Thordata provides the perfect solution for all your data scraping needs!
๐Ÿ‘ https://www.thordata.com/?ls=DhthVzyG&lk=Data

โœจ Why Choose Thordata?

โœ… Rotating & Sticky Residential Proxies:
Enjoy secure, uninterrupted scraping with our rotating and sticky IPs.
Perfect for avoiding blocks and handling high-volume requests.
๐ŸŒ Global Coverage:
Access over 195 countries with advanced targeting options to pinpoint your ideal IPs, whether by country, state, city, or ASN.
โšก๏ธ High-Speed Performance:
Get access to unlimited bandwidth and a 99.9% uptime guaranteeโ€”ideal for seamless, fast data collection.
๐Ÿ’ก Flexible Usage:
Support for SOCKS5 and HTTP(S) protocols, ensuring compatibility with all your favorite scraping tools and services.

๐ŸŽฏ How to Get Started:
1๏ธโƒฃ Join our official Telegram community.
2๏ธโƒฃ Register and contact the admin @Thordata to activate your trial.
3๏ธโƒฃ Receive 100MB of FREE Residential Proxy traffic to kickstart your scraping journey.

๐Ÿ‘‰ Join now: https://t.me/thordataproxy

๐Ÿ”ง Start experiencing Thordataโ€™s https://www.thordata.com/?ls=DhthVzyG&lk=Data power in your data science workflows today!
Whether itโ€™s market research, machine learning, or competitive analysisโ€”Thordata is your trusted partner in efficient, scalable data scraping.
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4
๐Ÿ”น Title: If We May De-Presuppose: Robustly Verifying Claims through Presupposition-Free Question Decomposition

๐Ÿ”น Publication Date: Published on Aug 22

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.16838
โ€ข PDF: https://arxiv.org/pdf/2508.16838
โ€ข Github: https://github.com/dipta007/De-Presuppose

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: MMTok: Multimodal Coverage Maximization for Efficient Inference of VLMs

๐Ÿ”น Publication Date: Published on Aug 25

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.18264
โ€ข PDF: https://arxiv.org/pdf/2508.18264
โ€ข Project Page: https://project.ironieser.cc/mmtok

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: Hermes 4 Technical Report

๐Ÿ”น Publication Date: Published on Aug 25

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.18255
โ€ข PDF: https://arxiv.org/pdf/2508.18255
โ€ข Project Page: https://hermes4.nousresearch.com/

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
โค1
๐Ÿ”น Title: Semantic Diffusion Posterior Sampling for Cardiac Ultrasound Dehazing

๐Ÿ”น Publication Date: Published on Aug 24

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.17326
โ€ข PDF: https://arxiv.org/pdf/2508.17326
โ€ข Github: https://github.com/tristan-deep/semantic-diffusion-echo-dehazing

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: Understanding Tool-Integrated Reasoning

๐Ÿ”น Publication Date: Published on Aug 26

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.19201
โ€ข PDF: https://arxiv.org/pdf/2508.19201
โ€ข Project Page: https://zhongwenxu.notion.site/Understanding-Tool-Integrated-Reasoning-2551c4e140e3805489fadcc802a1ea83

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: Spacer: Towards Engineered Scientific Inspiration

๐Ÿ”น Publication Date: Published on Aug 25

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.17661
โ€ข PDF: https://arxiv.org/pdf/2508.17661
โ€ข Github: https://github.com/asteromorph-corp/spacer

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: VoxHammer: Training-Free Precise and Coherent 3D Editing in Native 3D Space

๐Ÿ”น Publication Date: Published on Aug 26

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.19247
โ€ข PDF: https://arxiv.org/pdf/2508.19247
โ€ข Project Page: https://huanngzh.github.io/VoxHammer-Page/
โ€ข Github: https://github.com/Nelipot-Lee/VoxHammer/Edit3D-Bench

๐Ÿ”น Datasets citing this paper:
โ€ข https://huggingface.co/datasets/huanngzh/Edit3D-Bench

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
โค1
๐Ÿ”น Title: Unraveling the cognitive patterns of Large Language Models through module communities

๐Ÿ”น Publication Date: Published on Aug 25

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.18192
โ€ข PDF: https://arxiv.org/pdf/2508.18192

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
โค2
ML Research Hub pinned ยซ๐Ÿ” Searching for fast, reliable proxies for your data science and machine learning projects? Thordata provides the perfect solution for all your data scraping needs! ๐Ÿ‘ https://www.thordata.com/?ls=DhthVzyG&lk=Data โœจ Why Choose Thordata? โœ… Rotating & Stickyโ€ฆยป
๐Ÿ”น Title: OmniHuman-1.5: Instilling an Active Mind in Avatars via Cognitive Simulation

๐Ÿ”น Publication Date: Published on Aug 26

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.19209
โ€ข PDF: https://arxiv.org/pdf/2508.19209
โ€ข Project Page: https://omnihuman-lab.github.io/v1_5/

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
โค1
๐Ÿ”น Title: UltraMemV2: Memory Networks Scaling to 120B Parameters with Superior Long-Context Learning

๐Ÿ”น Publication Date: Published on Aug 26

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.18756
โ€ข PDF: https://arxiv.org/pdf/2508.18756
โ€ข Github: https://github.com/ZihaoHuang-notabot/Ultra-Sparse-Memory-Network

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: CMPhysBench: A Benchmark for Evaluating Large Language Models in Condensed Matter Physics

๐Ÿ”น Publication Date: Published on Aug 25

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.18124
โ€ข PDF: https://arxiv.org/pdf/2508.18124
โ€ข Github: https://github.com/CMPhysBench/CMPhysBench%5D

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: TreePO: Bridging the Gap of Policy Optimization and Efficacy and Inference Efficiency with Heuristic Tree-based Modeling

๐Ÿ”น Publication Date: Published on Aug 24

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.17445
โ€ข PDF: https://arxiv.org/pdf/2508.17445

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: Wan-S2V: Audio-Driven Cinematic Video Generation

๐Ÿ”น Publication Date: Published on Aug 26

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.18621
โ€ข PDF: https://arxiv.org/pdf/2508.18621

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: QueryBandits for Hallucination Mitigation: Exploiting Semantic Features for No-Regret Rewriting

๐Ÿ”น Publication Date: Published on Aug 22

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.16697
โ€ข PDF: https://arxiv.org/pdf/2508.16697

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: ThinkDial: An Open Recipe for Controlling Reasoning Effort in Large Language Models

๐Ÿ”น Publication Date: Published on Aug 26

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2502.18080
โ€ข PDF: https://arxiv.org/pdf/2508.18773

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
โค1
๐Ÿ”น Title: Training Language Model Agents to Find Vulnerabilities with CTF-Dojo

๐Ÿ”น Publication Date: Published on Aug 25

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.00910
โ€ข PDF: https://arxiv.org/pdf/2508.18370

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
โค1
๐Ÿ”น Title: FastMesh:Efficient Artistic Mesh Generation via Component Decoupling

๐Ÿ”น Publication Date: Published on Aug 26

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.19188
โ€ข PDF: https://arxiv.org/pdf/2508.19188
โ€ข Project Page: https://jhkim0759.github.io/projects/FastMesh/

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
โค1
๐Ÿ”น Title: Evaluating, Synthesizing, and Enhancing for Customer Support Conversation

๐Ÿ”น Publication Date: Published on Aug 6

๐Ÿ”น Abstract: A structured framework and datasets for training customer service agents using well-defined support strategies improve the quality of customer support interactions and problem resolution. AI-generated summary Effective customer support requires not only accurate problem solving but also structured and empathetic communication aligned with professional standards. However, existing dialogue datasets often lack strategic guidance, and real-world service data is difficult to access and annotate. To address this, we introduce the task of Customer Support Conversation (CSC), aimed at training customer service agents to respond using well-defined support strategies. We propose a structured CSC framework grounded in COPC guidelines , defining five conversational stages and twelve strategies to guide high-quality interactions. Based on this, we construct CSConv , an evaluation dataset of 1,855 real-world customer-agent conversations rewritten using LLMs to reflect deliberate strategy use, and annotated accordingly. Additionally, we develop a role-playing approach that simulates strategy-rich conversations using LLM-powered roles aligned with the CSC framework, resulting in the training dataset RoleCS . Experiments show that fine-tuning strong LLMs on RoleCS significantly improves their ability to generate high-quality, strategy-aligned responses on CSConv . Human evaluations further confirm gains in problem resolution. All code and data will be made publicly available at https://github.com/aliyun/qwen-dianjin.

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.04423

โ€ข PDF: https://arxiv.org/pdf/2508.04423

โ€ข Github: https://github.com/aliyun/qwen-dianjin

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: Autoregressive Universal Video Segmentation Model

๐Ÿ”น Publication Date: Published on Aug 26

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.19242
โ€ข PDF: https://arxiv.org/pdf/2508.19242

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT