Forwarded from ENG. Hussein Sheikho
Thordata provides the perfect solution for all your data scraping needs!
Enjoy secure, uninterrupted scraping with our rotating and sticky IPs.
Perfect for avoiding blocks and handling high-volume requests.
Access over 195 countries with advanced targeting options to pinpoint your ideal IPs, whether by country, state, city, or ASN.
Get access to unlimited bandwidth and a 99.9% uptime guaranteeโideal for seamless, fast data collection.
Support for SOCKS5 and HTTP(S) protocols, ensuring compatibility with all your favorite scraping tools and services.
๐ง Start experiencing Thordataโs https://www.thordata.com/?ls=DhthVzyG&lk=Data power in your data science workflows today!
Whether itโs market research, machine learning, or competitive analysisโThordata is your trusted partner in efficient, scalable data scraping.
Please open Telegram to view this post
VIEW IN TELEGRAM
Thordata
Thordata - High-Quality Proxy Service for Web Data Scraping
Thordata's precision proxy solution was chosen to ensure seamless data collection. Enjoy the best prices and services tailored to your needs.
โค4
๐น Title: If We May De-Presuppose: Robustly Verifying Claims through Presupposition-Free Question Decomposition
๐น Publication Date: Published on Aug 22
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.16838
โข PDF: https://arxiv.org/pdf/2508.16838
โข Github: https://github.com/dipta007/De-Presuppose
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 22
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.16838
โข PDF: https://arxiv.org/pdf/2508.16838
โข Github: https://github.com/dipta007/De-Presuppose
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: MMTok: Multimodal Coverage Maximization for Efficient Inference of VLMs
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18264
โข PDF: https://arxiv.org/pdf/2508.18264
โข Project Page: https://project.ironieser.cc/mmtok
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18264
โข PDF: https://arxiv.org/pdf/2508.18264
โข Project Page: https://project.ironieser.cc/mmtok
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: Hermes 4 Technical Report
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18255
โข PDF: https://arxiv.org/pdf/2508.18255
โข Project Page: https://hermes4.nousresearch.com/
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18255
โข PDF: https://arxiv.org/pdf/2508.18255
โข Project Page: https://hermes4.nousresearch.com/
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
โค1
๐น Title: Semantic Diffusion Posterior Sampling for Cardiac Ultrasound Dehazing
๐น Publication Date: Published on Aug 24
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17326
โข PDF: https://arxiv.org/pdf/2508.17326
โข Github: https://github.com/tristan-deep/semantic-diffusion-echo-dehazing
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 24
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17326
โข PDF: https://arxiv.org/pdf/2508.17326
โข Github: https://github.com/tristan-deep/semantic-diffusion-echo-dehazing
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: Understanding Tool-Integrated Reasoning
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.19201
โข PDF: https://arxiv.org/pdf/2508.19201
โข Project Page: https://zhongwenxu.notion.site/Understanding-Tool-Integrated-Reasoning-2551c4e140e3805489fadcc802a1ea83
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.19201
โข PDF: https://arxiv.org/pdf/2508.19201
โข Project Page: https://zhongwenxu.notion.site/Understanding-Tool-Integrated-Reasoning-2551c4e140e3805489fadcc802a1ea83
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: Spacer: Towards Engineered Scientific Inspiration
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17661
โข PDF: https://arxiv.org/pdf/2508.17661
โข Github: https://github.com/asteromorph-corp/spacer
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17661
โข PDF: https://arxiv.org/pdf/2508.17661
โข Github: https://github.com/asteromorph-corp/spacer
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: VoxHammer: Training-Free Precise and Coherent 3D Editing in Native 3D Space
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.19247
โข PDF: https://arxiv.org/pdf/2508.19247
โข Project Page: https://huanngzh.github.io/VoxHammer-Page/
โข Github: https://github.com/Nelipot-Lee/VoxHammer/Edit3D-Bench
๐น Datasets citing this paper:
โข https://huggingface.co/datasets/huanngzh/Edit3D-Bench
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.19247
โข PDF: https://arxiv.org/pdf/2508.19247
โข Project Page: https://huanngzh.github.io/VoxHammer-Page/
โข Github: https://github.com/Nelipot-Lee/VoxHammer/Edit3D-Bench
๐น Datasets citing this paper:
โข https://huggingface.co/datasets/huanngzh/Edit3D-Bench
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
โค1
๐น Title: Unraveling the cognitive patterns of Large Language Models through module communities
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18192
โข PDF: https://arxiv.org/pdf/2508.18192
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18192
โข PDF: https://arxiv.org/pdf/2508.18192
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
โค2
ML Research Hub pinned ยซ๐ Searching for fast, reliable proxies for your data science and machine learning projects? Thordata provides the perfect solution for all your data scraping needs! ๐ https://www.thordata.com/?ls=DhthVzyG&lk=Data โจ Why Choose Thordata? โ
Rotating & Stickyโฆยป
๐น Title: OmniHuman-1.5: Instilling an Active Mind in Avatars via Cognitive Simulation
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.19209
โข PDF: https://arxiv.org/pdf/2508.19209
โข Project Page: https://omnihuman-lab.github.io/v1_5/
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.19209
โข PDF: https://arxiv.org/pdf/2508.19209
โข Project Page: https://omnihuman-lab.github.io/v1_5/
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
โค1
๐น Title: UltraMemV2: Memory Networks Scaling to 120B Parameters with Superior Long-Context Learning
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18756
โข PDF: https://arxiv.org/pdf/2508.18756
โข Github: https://github.com/ZihaoHuang-notabot/Ultra-Sparse-Memory-Network
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18756
โข PDF: https://arxiv.org/pdf/2508.18756
โข Github: https://github.com/ZihaoHuang-notabot/Ultra-Sparse-Memory-Network
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: CMPhysBench: A Benchmark for Evaluating Large Language Models in Condensed Matter Physics
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18124
โข PDF: https://arxiv.org/pdf/2508.18124
โข Github: https://github.com/CMPhysBench/CMPhysBench%5D
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18124
โข PDF: https://arxiv.org/pdf/2508.18124
โข Github: https://github.com/CMPhysBench/CMPhysBench%5D
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: TreePO: Bridging the Gap of Policy Optimization and Efficacy and Inference Efficiency with Heuristic Tree-based Modeling
๐น Publication Date: Published on Aug 24
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17445
โข PDF: https://arxiv.org/pdf/2508.17445
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 24
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17445
โข PDF: https://arxiv.org/pdf/2508.17445
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: Wan-S2V: Audio-Driven Cinematic Video Generation
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18621
โข PDF: https://arxiv.org/pdf/2508.18621
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18621
โข PDF: https://arxiv.org/pdf/2508.18621
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: QueryBandits for Hallucination Mitigation: Exploiting Semantic Features for No-Regret Rewriting
๐น Publication Date: Published on Aug 22
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.16697
โข PDF: https://arxiv.org/pdf/2508.16697
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 22
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.16697
โข PDF: https://arxiv.org/pdf/2508.16697
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: ThinkDial: An Open Recipe for Controlling Reasoning Effort in Large Language Models
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2502.18080
โข PDF: https://arxiv.org/pdf/2508.18773
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2502.18080
โข PDF: https://arxiv.org/pdf/2508.18773
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
โค1
๐น Title: Training Language Model Agents to Find Vulnerabilities with CTF-Dojo
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.00910
โข PDF: https://arxiv.org/pdf/2508.18370
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.00910
โข PDF: https://arxiv.org/pdf/2508.18370
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
โค1
๐น Title: FastMesh:Efficient Artistic Mesh Generation via Component Decoupling
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.19188
โข PDF: https://arxiv.org/pdf/2508.19188
โข Project Page: https://jhkim0759.github.io/projects/FastMesh/
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.19188
โข PDF: https://arxiv.org/pdf/2508.19188
โข Project Page: https://jhkim0759.github.io/projects/FastMesh/
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
โค1
๐น Title: Evaluating, Synthesizing, and Enhancing for Customer Support Conversation
๐น Publication Date: Published on Aug 6
๐น Abstract: A structured framework and datasets for training customer service agents using well-defined support strategies improve the quality of customer support interactions and problem resolution. AI-generated summary Effective customer support requires not only accurate problem solving but also structured and empathetic communication aligned with professional standards. However, existing dialogue datasets often lack strategic guidance, and real-world service data is difficult to access and annotate. To address this, we introduce the task of Customer Support Conversation (CSC), aimed at training customer service agents to respond using well-defined support strategies. We propose a structured CSC framework grounded in COPC guidelines , defining five conversational stages and twelve strategies to guide high-quality interactions. Based on this, we construct CSConv , an evaluation dataset of 1,855 real-world customer-agent conversations rewritten using LLMs to reflect deliberate strategy use, and annotated accordingly. Additionally, we develop a role-playing approach that simulates strategy-rich conversations using LLM-powered roles aligned with the CSC framework, resulting in the training dataset RoleCS . Experiments show that fine-tuning strong LLMs on RoleCS significantly improves their ability to generate high-quality, strategy-aligned responses on CSConv . Human evaluations further confirm gains in problem resolution. All code and data will be made publicly available at https://github.com/aliyun/qwen-dianjin.
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.04423
โข PDF: https://arxiv.org/pdf/2508.04423
โข Github: https://github.com/aliyun/qwen-dianjin
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 6
๐น Abstract: A structured framework and datasets for training customer service agents using well-defined support strategies improve the quality of customer support interactions and problem resolution. AI-generated summary Effective customer support requires not only accurate problem solving but also structured and empathetic communication aligned with professional standards. However, existing dialogue datasets often lack strategic guidance, and real-world service data is difficult to access and annotate. To address this, we introduce the task of Customer Support Conversation (CSC), aimed at training customer service agents to respond using well-defined support strategies. We propose a structured CSC framework grounded in COPC guidelines , defining five conversational stages and twelve strategies to guide high-quality interactions. Based on this, we construct CSConv , an evaluation dataset of 1,855 real-world customer-agent conversations rewritten using LLMs to reflect deliberate strategy use, and annotated accordingly. Additionally, we develop a role-playing approach that simulates strategy-rich conversations using LLM-powered roles aligned with the CSC framework, resulting in the training dataset RoleCS . Experiments show that fine-tuning strong LLMs on RoleCS significantly improves their ability to generate high-quality, strategy-aligned responses on CSConv . Human evaluations further confirm gains in problem resolution. All code and data will be made publicly available at https://github.com/aliyun/qwen-dianjin.
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.04423
โข PDF: https://arxiv.org/pdf/2508.04423
โข Github: https://github.com/aliyun/qwen-dianjin
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: Autoregressive Universal Video Segmentation Model
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.19242
โข PDF: https://arxiv.org/pdf/2508.19242
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 26
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.19242
โข PDF: https://arxiv.org/pdf/2508.19242
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT