ML Research Hub
32.9K subscribers
4.72K photos
292 videos
24 files
5.1K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ”Ή Title: Explain Before You Answer: A Survey on Compositional Visual Reasoning

πŸ”Ή Publication Date: Published on Aug 24

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.17298
β€’ PDF: https://arxiv.org/pdf/2508.17298
β€’ Project Page: https://github.com/pokerme7777/Compositional-Visual-Reasoning-Survey
β€’ Github: https://github.com/pokerme7777/Compositional-Visual-Reasoning-Survey

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Agent Lightning: Train ANY AI Agents with Reinforcement Learning

πŸ”Ή Publication Date: Published on Aug 5

πŸ”Ή Abstract: Agent Lightning is a flexible RL framework for training LLMs in various agents, using a hierarchical RL algorithm and decoupling execution from training to handle complex interactions. AI-generated summary We present Agent Lightning, a flexible and extensible framework that enables Reinforcement Learning (RL)-based training of Large Language Models (LLMs) for any AI agent. Unlike existing methods that tightly couple RL training with agent or rely on sequence concatenation with masking, Agent Lightning achieves complete decoupling between agent execution and training, allowing seamless integration with existing agents developed via diverse ways (e.g., using frameworks like LangChain, OpenAI Agents SDK, AutoGen, and building from scratch) with almost ZERO code modifications. By formulating agent execution as Markov decision process , we define an unified data interface and propose a hierarchical RL algorithm , LightningRL, which contains a credit assignment module, allowing us to decompose trajectories generated by ANY agents into training transition. This enables RL to handle complex interaction logic, such as multi-agent scenarios and dynamic workflows. For the system design, we introduce a Training-Agent Disaggregation architecture , and brings agent observability frameworks into agent runtime, providing a standardized agent finetuning interface. Experiments across text-to-SQL , retrieval-augmented generation, and math tool-use tasks demonstrate stable, continuous improvements, showcasing the framework's potential for real-world agent training and deployment.

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.03680

β€’ PDF: https://arxiv.org/pdf/2508.03680

β€’ Project Page: https://www.microsoft.com/en-us/research/project/agent-lightning/

β€’ Github: https://github.com/microsoft/agent-lightning

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: MV-RAG: Retrieval Augmented Multiview Diffusion

πŸ”Ή Publication Date: Published on Aug 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.16577
β€’ PDF: https://arxiv.org/pdf/2508.16577
β€’ Project Page: https://yosefdayani.github.io/MV-RAG/
β€’ Github: https://github.com/yosefdayani/MV-RAG

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: MEENA (PersianMMMU): Multimodal-Multilingual Educational Exams for N-level Assessment

πŸ”Ή Publication Date: Published on Aug 24

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.17290
β€’ PDF: https://arxiv.org/pdf/2508.17290

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: German4All - A Dataset and Model for Readability-Controlled Paraphrasing in German

πŸ”Ή Publication Date: Published on Aug 25

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.17973
β€’ PDF: https://arxiv.org/pdf/2508.17973

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: Beyond Memorization: Extending Reasoning Depth with Recurrence, Memory and Test-Time Compute Scaling

πŸ”Ή Publication Date: Published on Aug 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.16745
β€’ PDF: https://arxiv.org/pdf/2508.16745

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: Limitations of Normalization in Attention Mechanism

πŸ”Ή Publication Date: Published on Aug 25

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.17821
β€’ PDF: https://arxiv.org/pdf/2508.17821

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: MeshSplat: Generalizable Sparse-View Surface Reconstruction via Gaussian Splatting

πŸ”Ή Publication Date: Published on Aug 25

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.17811
β€’ PDF: https://arxiv.org/pdf/2508.17811
β€’ Project Page: https://hanzhichang.github.io/meshsplat_web
β€’ Github: https://hanzhichang.github.io/meshsplat_web

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: REGEN: Real-Time Photorealism Enhancement in Games via a Dual-Stage Generative Network Framework

πŸ”Ή Publication Date: Published on Aug 23

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.17061
β€’ PDF: https://arxiv.org/pdf/2508.17061
β€’ Github: https://github.com/stefanos50/REGEN

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀2
Forwarded from ENG. Hussein Sheikho
πŸ” Searching for fast, reliable proxies for your data science and machine learning projects?
Thordata provides the perfect solution for all your data scraping needs!
πŸ‘ https://www.thordata.com/?ls=DhthVzyG&lk=Data

✨ Why Choose Thordata?

βœ… Rotating & Sticky Residential Proxies:
Enjoy secure, uninterrupted scraping with our rotating and sticky IPs.
Perfect for avoiding blocks and handling high-volume requests.
🌍 Global Coverage:
Access over 195 countries with advanced targeting options to pinpoint your ideal IPs, whether by country, state, city, or ASN.
⚑️ High-Speed Performance:
Get access to unlimited bandwidth and a 99.9% uptime guaranteeβ€”ideal for seamless, fast data collection.
πŸ’‘ Flexible Usage:
Support for SOCKS5 and HTTP(S) protocols, ensuring compatibility with all your favorite scraping tools and services.

🎯 How to Get Started:
1️⃣ Join our official Telegram community.
2️⃣ Register and contact the admin @Thordata to activate your trial.
3️⃣ Receive 100MB of FREE Residential Proxy traffic to kickstart your scraping journey.

πŸ‘‰ Join now: https://t.me/thordataproxy

πŸ”§ Start experiencing Thordata’s https://www.thordata.com/?ls=DhthVzyG&lk=Data power in your data science workflows today!
Whether it’s market research, machine learning, or competitive analysisβ€”Thordata is your trusted partner in efficient, scalable data scraping.
Please open Telegram to view this post
VIEW IN TELEGRAM
❀4
πŸ”Ή Title: If We May De-Presuppose: Robustly Verifying Claims through Presupposition-Free Question Decomposition

πŸ”Ή Publication Date: Published on Aug 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.16838
β€’ PDF: https://arxiv.org/pdf/2508.16838
β€’ Github: https://github.com/dipta007/De-Presuppose

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: MMTok: Multimodal Coverage Maximization for Efficient Inference of VLMs

πŸ”Ή Publication Date: Published on Aug 25

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.18264
β€’ PDF: https://arxiv.org/pdf/2508.18264
β€’ Project Page: https://project.ironieser.cc/mmtok

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Hermes 4 Technical Report

πŸ”Ή Publication Date: Published on Aug 25

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.18255
β€’ PDF: https://arxiv.org/pdf/2508.18255
β€’ Project Page: https://hermes4.nousresearch.com/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: Semantic Diffusion Posterior Sampling for Cardiac Ultrasound Dehazing

πŸ”Ή Publication Date: Published on Aug 24

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.17326
β€’ PDF: https://arxiv.org/pdf/2508.17326
β€’ Github: https://github.com/tristan-deep/semantic-diffusion-echo-dehazing

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Understanding Tool-Integrated Reasoning

πŸ”Ή Publication Date: Published on Aug 26

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.19201
β€’ PDF: https://arxiv.org/pdf/2508.19201
β€’ Project Page: https://zhongwenxu.notion.site/Understanding-Tool-Integrated-Reasoning-2551c4e140e3805489fadcc802a1ea83

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Spacer: Towards Engineered Scientific Inspiration

πŸ”Ή Publication Date: Published on Aug 25

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.17661
β€’ PDF: https://arxiv.org/pdf/2508.17661
β€’ Github: https://github.com/asteromorph-corp/spacer

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: VoxHammer: Training-Free Precise and Coherent 3D Editing in Native 3D Space

πŸ”Ή Publication Date: Published on Aug 26

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.19247
β€’ PDF: https://arxiv.org/pdf/2508.19247
β€’ Project Page: https://huanngzh.github.io/VoxHammer-Page/
β€’ Github: https://github.com/Nelipot-Lee/VoxHammer/Edit3D-Bench

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/huanngzh/Edit3D-Bench

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: Unraveling the cognitive patterns of Large Language Models through module communities

πŸ”Ή Publication Date: Published on Aug 25

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.18192
β€’ PDF: https://arxiv.org/pdf/2508.18192

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀2
ML Research Hub pinned Β«πŸ” Searching for fast, reliable proxies for your data science and machine learning projects? Thordata provides the perfect solution for all your data scraping needs! πŸ‘ https://www.thordata.com/?ls=DhthVzyG&lk=Data ✨ Why Choose Thordata? βœ… Rotating & Sticky…»
πŸ”Ή Title: OmniHuman-1.5: Instilling an Active Mind in Avatars via Cognitive Simulation

πŸ”Ή Publication Date: Published on Aug 26

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.19209
β€’ PDF: https://arxiv.org/pdf/2508.19209
β€’ Project Page: https://omnihuman-lab.github.io/v1_5/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: UltraMemV2: Memory Networks Scaling to 120B Parameters with Superior Long-Context Learning

πŸ”Ή Publication Date: Published on Aug 26

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2508.18756
β€’ PDF: https://arxiv.org/pdf/2508.18756
β€’ Github: https://github.com/ZihaoHuang-notabot/Ultra-Sparse-Memory-Network

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT