πΉ Title: Explain Before You Answer: A Survey on Compositional Visual Reasoning
πΉ Publication Date: Published on Aug 24
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.17298
β’ PDF: https://arxiv.org/pdf/2508.17298
β’ Project Page: https://github.com/pokerme7777/Compositional-Visual-Reasoning-Survey
β’ Github: https://github.com/pokerme7777/Compositional-Visual-Reasoning-Survey
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 24
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.17298
β’ PDF: https://arxiv.org/pdf/2508.17298
β’ Project Page: https://github.com/pokerme7777/Compositional-Visual-Reasoning-Survey
β’ Github: https://github.com/pokerme7777/Compositional-Visual-Reasoning-Survey
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Agent Lightning: Train ANY AI Agents with Reinforcement Learning
πΉ Publication Date: Published on Aug 5
πΉ Abstract: Agent Lightning is a flexible RL framework for training LLMs in various agents, using a hierarchical RL algorithm and decoupling execution from training to handle complex interactions. AI-generated summary We present Agent Lightning, a flexible and extensible framework that enables Reinforcement Learning (RL)-based training of Large Language Models (LLMs) for any AI agent. Unlike existing methods that tightly couple RL training with agent or rely on sequence concatenation with masking, Agent Lightning achieves complete decoupling between agent execution and training, allowing seamless integration with existing agents developed via diverse ways (e.g., using frameworks like LangChain, OpenAI Agents SDK, AutoGen, and building from scratch) with almost ZERO code modifications. By formulating agent execution as Markov decision process , we define an unified data interface and propose a hierarchical RL algorithm , LightningRL, which contains a credit assignment module, allowing us to decompose trajectories generated by ANY agents into training transition. This enables RL to handle complex interaction logic, such as multi-agent scenarios and dynamic workflows. For the system design, we introduce a Training-Agent Disaggregation architecture , and brings agent observability frameworks into agent runtime, providing a standardized agent finetuning interface. Experiments across text-to-SQL , retrieval-augmented generation, and math tool-use tasks demonstrate stable, continuous improvements, showcasing the framework's potential for real-world agent training and deployment.
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.03680
β’ PDF: https://arxiv.org/pdf/2508.03680
β’ Project Page: https://www.microsoft.com/en-us/research/project/agent-lightning/
β’ Github: https://github.com/microsoft/agent-lightning
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 5
πΉ Abstract: Agent Lightning is a flexible RL framework for training LLMs in various agents, using a hierarchical RL algorithm and decoupling execution from training to handle complex interactions. AI-generated summary We present Agent Lightning, a flexible and extensible framework that enables Reinforcement Learning (RL)-based training of Large Language Models (LLMs) for any AI agent. Unlike existing methods that tightly couple RL training with agent or rely on sequence concatenation with masking, Agent Lightning achieves complete decoupling between agent execution and training, allowing seamless integration with existing agents developed via diverse ways (e.g., using frameworks like LangChain, OpenAI Agents SDK, AutoGen, and building from scratch) with almost ZERO code modifications. By formulating agent execution as Markov decision process , we define an unified data interface and propose a hierarchical RL algorithm , LightningRL, which contains a credit assignment module, allowing us to decompose trajectories generated by ANY agents into training transition. This enables RL to handle complex interaction logic, such as multi-agent scenarios and dynamic workflows. For the system design, we introduce a Training-Agent Disaggregation architecture , and brings agent observability frameworks into agent runtime, providing a standardized agent finetuning interface. Experiments across text-to-SQL , retrieval-augmented generation, and math tool-use tasks demonstrate stable, continuous improvements, showcasing the framework's potential for real-world agent training and deployment.
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.03680
β’ PDF: https://arxiv.org/pdf/2508.03680
β’ Project Page: https://www.microsoft.com/en-us/research/project/agent-lightning/
β’ Github: https://github.com/microsoft/agent-lightning
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: MV-RAG: Retrieval Augmented Multiview Diffusion
πΉ Publication Date: Published on Aug 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.16577
β’ PDF: https://arxiv.org/pdf/2508.16577
β’ Project Page: https://yosefdayani.github.io/MV-RAG/
β’ Github: https://github.com/yosefdayani/MV-RAG
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.16577
β’ PDF: https://arxiv.org/pdf/2508.16577
β’ Project Page: https://yosefdayani.github.io/MV-RAG/
β’ Github: https://github.com/yosefdayani/MV-RAG
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: MEENA (PersianMMMU): Multimodal-Multilingual Educational Exams for N-level Assessment
πΉ Publication Date: Published on Aug 24
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.17290
β’ PDF: https://arxiv.org/pdf/2508.17290
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 24
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.17290
β’ PDF: https://arxiv.org/pdf/2508.17290
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
β€1
πΉ Title: German4All - A Dataset and Model for Readability-Controlled Paraphrasing in German
πΉ Publication Date: Published on Aug 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.17973
β’ PDF: https://arxiv.org/pdf/2508.17973
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.17973
β’ PDF: https://arxiv.org/pdf/2508.17973
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
β€1
πΉ Title: Beyond Memorization: Extending Reasoning Depth with Recurrence, Memory and Test-Time Compute Scaling
πΉ Publication Date: Published on Aug 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.16745
β’ PDF: https://arxiv.org/pdf/2508.16745
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.16745
β’ PDF: https://arxiv.org/pdf/2508.16745
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
β€1
πΉ Title: Limitations of Normalization in Attention Mechanism
πΉ Publication Date: Published on Aug 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.17821
β’ PDF: https://arxiv.org/pdf/2508.17821
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.17821
β’ PDF: https://arxiv.org/pdf/2508.17821
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: MeshSplat: Generalizable Sparse-View Surface Reconstruction via Gaussian Splatting
πΉ Publication Date: Published on Aug 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.17811
β’ PDF: https://arxiv.org/pdf/2508.17811
β’ Project Page: https://hanzhichang.github.io/meshsplat_web
β’ Github: https://hanzhichang.github.io/meshsplat_web
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.17811
β’ PDF: https://arxiv.org/pdf/2508.17811
β’ Project Page: https://hanzhichang.github.io/meshsplat_web
β’ Github: https://hanzhichang.github.io/meshsplat_web
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
β€1
πΉ Title: REGEN: Real-Time Photorealism Enhancement in Games via a Dual-Stage Generative Network Framework
πΉ Publication Date: Published on Aug 23
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.17061
β’ PDF: https://arxiv.org/pdf/2508.17061
β’ Github: https://github.com/stefanos50/REGEN
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 23
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.17061
β’ PDF: https://arxiv.org/pdf/2508.17061
β’ Github: https://github.com/stefanos50/REGEN
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
β€2
Forwarded from ENG. Hussein Sheikho
Thordata provides the perfect solution for all your data scraping needs!
Enjoy secure, uninterrupted scraping with our rotating and sticky IPs.
Perfect for avoiding blocks and handling high-volume requests.
Access over 195 countries with advanced targeting options to pinpoint your ideal IPs, whether by country, state, city, or ASN.
Get access to unlimited bandwidth and a 99.9% uptime guaranteeβideal for seamless, fast data collection.
Support for SOCKS5 and HTTP(S) protocols, ensuring compatibility with all your favorite scraping tools and services.
π§ Start experiencing Thordataβs https://www.thordata.com/?ls=DhthVzyG&lk=Data power in your data science workflows today!
Whether itβs market research, machine learning, or competitive analysisβThordata is your trusted partner in efficient, scalable data scraping.
Please open Telegram to view this post
VIEW IN TELEGRAM
Thordata
Thordata - High-Quality Proxy Service for Web Data Scraping
Thordata's precision proxy solution was chosen to ensure seamless data collection. Enjoy the best prices and services tailored to your needs.
β€4
πΉ Title: If We May De-Presuppose: Robustly Verifying Claims through Presupposition-Free Question Decomposition
πΉ Publication Date: Published on Aug 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.16838
β’ PDF: https://arxiv.org/pdf/2508.16838
β’ Github: https://github.com/dipta007/De-Presuppose
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.16838
β’ PDF: https://arxiv.org/pdf/2508.16838
β’ Github: https://github.com/dipta007/De-Presuppose
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: MMTok: Multimodal Coverage Maximization for Efficient Inference of VLMs
πΉ Publication Date: Published on Aug 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.18264
β’ PDF: https://arxiv.org/pdf/2508.18264
β’ Project Page: https://project.ironieser.cc/mmtok
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.18264
β’ PDF: https://arxiv.org/pdf/2508.18264
β’ Project Page: https://project.ironieser.cc/mmtok
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Hermes 4 Technical Report
πΉ Publication Date: Published on Aug 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.18255
β’ PDF: https://arxiv.org/pdf/2508.18255
β’ Project Page: https://hermes4.nousresearch.com/
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.18255
β’ PDF: https://arxiv.org/pdf/2508.18255
β’ Project Page: https://hermes4.nousresearch.com/
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
β€1
πΉ Title: Semantic Diffusion Posterior Sampling for Cardiac Ultrasound Dehazing
πΉ Publication Date: Published on Aug 24
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.17326
β’ PDF: https://arxiv.org/pdf/2508.17326
β’ Github: https://github.com/tristan-deep/semantic-diffusion-echo-dehazing
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 24
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.17326
β’ PDF: https://arxiv.org/pdf/2508.17326
β’ Github: https://github.com/tristan-deep/semantic-diffusion-echo-dehazing
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Understanding Tool-Integrated Reasoning
πΉ Publication Date: Published on Aug 26
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.19201
β’ PDF: https://arxiv.org/pdf/2508.19201
β’ Project Page: https://zhongwenxu.notion.site/Understanding-Tool-Integrated-Reasoning-2551c4e140e3805489fadcc802a1ea83
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 26
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.19201
β’ PDF: https://arxiv.org/pdf/2508.19201
β’ Project Page: https://zhongwenxu.notion.site/Understanding-Tool-Integrated-Reasoning-2551c4e140e3805489fadcc802a1ea83
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Spacer: Towards Engineered Scientific Inspiration
πΉ Publication Date: Published on Aug 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.17661
β’ PDF: https://arxiv.org/pdf/2508.17661
β’ Github: https://github.com/asteromorph-corp/spacer
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.17661
β’ PDF: https://arxiv.org/pdf/2508.17661
β’ Github: https://github.com/asteromorph-corp/spacer
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: VoxHammer: Training-Free Precise and Coherent 3D Editing in Native 3D Space
πΉ Publication Date: Published on Aug 26
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.19247
β’ PDF: https://arxiv.org/pdf/2508.19247
β’ Project Page: https://huanngzh.github.io/VoxHammer-Page/
β’ Github: https://github.com/Nelipot-Lee/VoxHammer/Edit3D-Bench
πΉ Datasets citing this paper:
β’ https://huggingface.co/datasets/huanngzh/Edit3D-Bench
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 26
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.19247
β’ PDF: https://arxiv.org/pdf/2508.19247
β’ Project Page: https://huanngzh.github.io/VoxHammer-Page/
β’ Github: https://github.com/Nelipot-Lee/VoxHammer/Edit3D-Bench
πΉ Datasets citing this paper:
β’ https://huggingface.co/datasets/huanngzh/Edit3D-Bench
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
β€1
πΉ Title: Unraveling the cognitive patterns of Large Language Models through module communities
πΉ Publication Date: Published on Aug 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.18192
β’ PDF: https://arxiv.org/pdf/2508.18192
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.18192
β’ PDF: https://arxiv.org/pdf/2508.18192
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
β€2
ML Research Hub pinned Β«π Searching for fast, reliable proxies for your data science and machine learning projects? Thordata provides the perfect solution for all your data scraping needs! π https://www.thordata.com/?ls=DhthVzyG&lk=Data β¨ Why Choose Thordata? β
Rotating & Stickyβ¦Β»
πΉ Title: OmniHuman-1.5: Instilling an Active Mind in Avatars via Cognitive Simulation
πΉ Publication Date: Published on Aug 26
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.19209
β’ PDF: https://arxiv.org/pdf/2508.19209
β’ Project Page: https://omnihuman-lab.github.io/v1_5/
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 26
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.19209
β’ PDF: https://arxiv.org/pdf/2508.19209
β’ Project Page: https://omnihuman-lab.github.io/v1_5/
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
β€1
πΉ Title: UltraMemV2: Memory Networks Scaling to 120B Parameters with Superior Long-Context Learning
πΉ Publication Date: Published on Aug 26
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.18756
β’ PDF: https://arxiv.org/pdf/2508.18756
β’ Github: https://github.com/ZihaoHuang-notabot/Ultra-Sparse-Memory-Network
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Aug 26
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2508.18756
β’ PDF: https://arxiv.org/pdf/2508.18756
β’ Github: https://github.com/ZihaoHuang-notabot/Ultra-Sparse-Memory-Network
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT