ML Research Hub
32.9K subscribers
4.72K photos
291 videos
24 files
5.1K links
Advancing research in Machine Learning โ€“ practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
๐Ÿ”น Title: PosterGen: Aesthetic-Aware Paper-to-Poster Generation via Multi-Agent LLMs

๐Ÿ”น Publication Date: Published on Aug 24

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.17188
โ€ข PDF: https://arxiv.org/pdf/2508.17188

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: InternVL3.5: Advancing Open-Source Multimodal Models in Versatility, Reasoning, and Efficiency

๐Ÿ”น Publication Date: Published on Aug 25

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.18265
โ€ข PDF: https://arxiv.org/pdf/2508.18265
โ€ข Github: https://github.com/OpenGVLab/InternVL

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: UQ: Assessing Language Models on Unsolved Questions

๐Ÿ”น Publication Date: Published on Aug 25

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.17580
โ€ข PDF: https://arxiv.org/pdf/2508.17580
โ€ข Project Page: https://huggingface.co/datasets/uq-project/uq

๐Ÿ”น Datasets citing this paper:
โ€ข https://huggingface.co/datasets/uq-project/uq

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: ST-Raptor: LLM-Powered Semi-Structured Table Question Answering

๐Ÿ”น Publication Date: Published on Aug 25

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.18190
โ€ข PDF: https://arxiv.org/pdf/2508.18190
โ€ข Github: https://github.com/weAIDB/ST-Raptor

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: SpotEdit: Evaluating Visually-Guided Image Editing Methods

๐Ÿ”น Publication Date: Published on Aug 25

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.18159
โ€ข PDF: https://arxiv.org/pdf/2508.18159
โ€ข Github: https://github.com/SaraGhazanfari/SpotEdit

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: Neither Valid nor Reliable? Investigating the Use of LLMs as Judges

๐Ÿ”น Publication Date: Published on Aug 25

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.18076
โ€ข PDF: https://arxiv.org/pdf/2508.18076

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: Breaking the Exploration Bottleneck: Rubric-Scaffolded Reinforcement Learning for General LLM Reasoning

๐Ÿ”น Publication Date: Published on Aug 23

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.16949
โ€ข PDF: https://arxiv.org/pdf/2508.16949

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: Visual-CoG: Stage-Aware Reinforcement Learning with Chain of Guidance for Text-to-Image Generation

๐Ÿ”น Publication Date: Published on Aug 25

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.18032
โ€ข PDF: https://arxiv.org/pdf/2508.18032

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
โค1
๐Ÿ”น Title: T2I-ReasonBench: Benchmarking Reasoning-Informed Text-to-Image Generation

๐Ÿ”น Publication Date: Published on Aug 24

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.17472
โ€ข PDF: https://arxiv.org/pdf/2508.17472

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
โค1
๐Ÿ”น Title: TaDiCodec: Text-aware Diffusion Speech Tokenizer for Speech Language Modeling

๐Ÿ”น Publication Date: Published on Aug 22

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.16790
โ€ข PDF: https://arxiv.org/pdf/2508.16790

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: Explain Before You Answer: A Survey on Compositional Visual Reasoning

๐Ÿ”น Publication Date: Published on Aug 24

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.17298
โ€ข PDF: https://arxiv.org/pdf/2508.17298
โ€ข Project Page: https://github.com/pokerme7777/Compositional-Visual-Reasoning-Survey
โ€ข Github: https://github.com/pokerme7777/Compositional-Visual-Reasoning-Survey

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: Agent Lightning: Train ANY AI Agents with Reinforcement Learning

๐Ÿ”น Publication Date: Published on Aug 5

๐Ÿ”น Abstract: Agent Lightning is a flexible RL framework for training LLMs in various agents, using a hierarchical RL algorithm and decoupling execution from training to handle complex interactions. AI-generated summary We present Agent Lightning, a flexible and extensible framework that enables Reinforcement Learning (RL)-based training of Large Language Models (LLMs) for any AI agent. Unlike existing methods that tightly couple RL training with agent or rely on sequence concatenation with masking, Agent Lightning achieves complete decoupling between agent execution and training, allowing seamless integration with existing agents developed via diverse ways (e.g., using frameworks like LangChain, OpenAI Agents SDK, AutoGen, and building from scratch) with almost ZERO code modifications. By formulating agent execution as Markov decision process , we define an unified data interface and propose a hierarchical RL algorithm , LightningRL, which contains a credit assignment module, allowing us to decompose trajectories generated by ANY agents into training transition. This enables RL to handle complex interaction logic, such as multi-agent scenarios and dynamic workflows. For the system design, we introduce a Training-Agent Disaggregation architecture , and brings agent observability frameworks into agent runtime, providing a standardized agent finetuning interface. Experiments across text-to-SQL , retrieval-augmented generation, and math tool-use tasks demonstrate stable, continuous improvements, showcasing the framework's potential for real-world agent training and deployment.

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.03680

โ€ข PDF: https://arxiv.org/pdf/2508.03680

โ€ข Project Page: https://www.microsoft.com/en-us/research/project/agent-lightning/

โ€ข Github: https://github.com/microsoft/agent-lightning

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: MV-RAG: Retrieval Augmented Multiview Diffusion

๐Ÿ”น Publication Date: Published on Aug 22

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.16577
โ€ข PDF: https://arxiv.org/pdf/2508.16577
โ€ข Project Page: https://yosefdayani.github.io/MV-RAG/
โ€ข Github: https://github.com/yosefdayani/MV-RAG

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: MEENA (PersianMMMU): Multimodal-Multilingual Educational Exams for N-level Assessment

๐Ÿ”น Publication Date: Published on Aug 24

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.17290
โ€ข PDF: https://arxiv.org/pdf/2508.17290

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
โค1
๐Ÿ”น Title: German4All - A Dataset and Model for Readability-Controlled Paraphrasing in German

๐Ÿ”น Publication Date: Published on Aug 25

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.17973
โ€ข PDF: https://arxiv.org/pdf/2508.17973

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
โค1
๐Ÿ”น Title: Beyond Memorization: Extending Reasoning Depth with Recurrence, Memory and Test-Time Compute Scaling

๐Ÿ”น Publication Date: Published on Aug 22

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.16745
โ€ข PDF: https://arxiv.org/pdf/2508.16745

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
โค1
๐Ÿ”น Title: Limitations of Normalization in Attention Mechanism

๐Ÿ”น Publication Date: Published on Aug 25

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.17821
โ€ข PDF: https://arxiv.org/pdf/2508.17821

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
๐Ÿ”น Title: MeshSplat: Generalizable Sparse-View Surface Reconstruction via Gaussian Splatting

๐Ÿ”น Publication Date: Published on Aug 25

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.17811
โ€ข PDF: https://arxiv.org/pdf/2508.17811
โ€ข Project Page: https://hanzhichang.github.io/meshsplat_web
โ€ข Github: https://hanzhichang.github.io/meshsplat_web

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
โค1
๐Ÿ”น Title: REGEN: Real-Time Photorealism Enhancement in Games via a Dual-Stage Generative Network Framework

๐Ÿ”น Publication Date: Published on Aug 23

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.17061
โ€ข PDF: https://arxiv.org/pdf/2508.17061
โ€ข Github: https://github.com/stefanos50/REGEN

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT
โค2
Forwarded from ENG. Hussein Sheikho
๐Ÿ” Searching for fast, reliable proxies for your data science and machine learning projects?
Thordata provides the perfect solution for all your data scraping needs!
๐Ÿ‘ https://www.thordata.com/?ls=DhthVzyG&lk=Data

โœจ Why Choose Thordata?

โœ… Rotating & Sticky Residential Proxies:
Enjoy secure, uninterrupted scraping with our rotating and sticky IPs.
Perfect for avoiding blocks and handling high-volume requests.
๐ŸŒ Global Coverage:
Access over 195 countries with advanced targeting options to pinpoint your ideal IPs, whether by country, state, city, or ASN.
โšก๏ธ High-Speed Performance:
Get access to unlimited bandwidth and a 99.9% uptime guaranteeโ€”ideal for seamless, fast data collection.
๐Ÿ’ก Flexible Usage:
Support for SOCKS5 and HTTP(S) protocols, ensuring compatibility with all your favorite scraping tools and services.

๐ŸŽฏ How to Get Started:
1๏ธโƒฃ Join our official Telegram community.
2๏ธโƒฃ Register and contact the admin @Thordata to activate your trial.
3๏ธโƒฃ Receive 100MB of FREE Residential Proxy traffic to kickstart your scraping journey.

๐Ÿ‘‰ Join now: https://t.me/thordataproxy

๐Ÿ”ง Start experiencing Thordataโ€™s https://www.thordata.com/?ls=DhthVzyG&lk=Data power in your data science workflows today!
Whether itโ€™s market research, machine learning, or competitive analysisโ€”Thordata is your trusted partner in efficient, scalable data scraping.
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4
๐Ÿ”น Title: If We May De-Presuppose: Robustly Verifying Claims through Presupposition-Free Question Decomposition

๐Ÿ”น Publication Date: Published on Aug 22

๐Ÿ”น Paper Links:
โ€ข arXiv Page: https://arxiv.org/abs/2508.16838
โ€ข PDF: https://arxiv.org/pdf/2508.16838
โ€ข Github: https://github.com/dipta007/De-Presuppose

๐Ÿ”น Datasets citing this paper:
No datasets found

๐Ÿ”น Spaces citing this paper:
No spaces found
==================================

For more data science resources:
โœ“ https://t.me/DataScienceT