๐น Title: PosterGen: Aesthetic-Aware Paper-to-Poster Generation via Multi-Agent LLMs
๐น Publication Date: Published on Aug 24
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17188
โข PDF: https://arxiv.org/pdf/2508.17188
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 24
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17188
โข PDF: https://arxiv.org/pdf/2508.17188
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: InternVL3.5: Advancing Open-Source Multimodal Models in Versatility, Reasoning, and Efficiency
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18265
โข PDF: https://arxiv.org/pdf/2508.18265
โข Github: https://github.com/OpenGVLab/InternVL
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18265
โข PDF: https://arxiv.org/pdf/2508.18265
โข Github: https://github.com/OpenGVLab/InternVL
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: UQ: Assessing Language Models on Unsolved Questions
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17580
โข PDF: https://arxiv.org/pdf/2508.17580
โข Project Page: https://huggingface.co/datasets/uq-project/uq
๐น Datasets citing this paper:
โข https://huggingface.co/datasets/uq-project/uq
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17580
โข PDF: https://arxiv.org/pdf/2508.17580
โข Project Page: https://huggingface.co/datasets/uq-project/uq
๐น Datasets citing this paper:
โข https://huggingface.co/datasets/uq-project/uq
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: ST-Raptor: LLM-Powered Semi-Structured Table Question Answering
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18190
โข PDF: https://arxiv.org/pdf/2508.18190
โข Github: https://github.com/weAIDB/ST-Raptor
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18190
โข PDF: https://arxiv.org/pdf/2508.18190
โข Github: https://github.com/weAIDB/ST-Raptor
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: SpotEdit: Evaluating Visually-Guided Image Editing Methods
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18159
โข PDF: https://arxiv.org/pdf/2508.18159
โข Github: https://github.com/SaraGhazanfari/SpotEdit
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18159
โข PDF: https://arxiv.org/pdf/2508.18159
โข Github: https://github.com/SaraGhazanfari/SpotEdit
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: Neither Valid nor Reliable? Investigating the Use of LLMs as Judges
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18076
โข PDF: https://arxiv.org/pdf/2508.18076
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18076
โข PDF: https://arxiv.org/pdf/2508.18076
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: Breaking the Exploration Bottleneck: Rubric-Scaffolded Reinforcement Learning for General LLM Reasoning
๐น Publication Date: Published on Aug 23
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.16949
โข PDF: https://arxiv.org/pdf/2508.16949
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 23
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.16949
โข PDF: https://arxiv.org/pdf/2508.16949
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: Visual-CoG: Stage-Aware Reinforcement Learning with Chain of Guidance for Text-to-Image Generation
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18032
โข PDF: https://arxiv.org/pdf/2508.18032
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.18032
โข PDF: https://arxiv.org/pdf/2508.18032
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
โค1
๐น Title: T2I-ReasonBench: Benchmarking Reasoning-Informed Text-to-Image Generation
๐น Publication Date: Published on Aug 24
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17472
โข PDF: https://arxiv.org/pdf/2508.17472
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 24
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17472
โข PDF: https://arxiv.org/pdf/2508.17472
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
โค1
๐น Title: TaDiCodec: Text-aware Diffusion Speech Tokenizer for Speech Language Modeling
๐น Publication Date: Published on Aug 22
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.16790
โข PDF: https://arxiv.org/pdf/2508.16790
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 22
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.16790
โข PDF: https://arxiv.org/pdf/2508.16790
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: Explain Before You Answer: A Survey on Compositional Visual Reasoning
๐น Publication Date: Published on Aug 24
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17298
โข PDF: https://arxiv.org/pdf/2508.17298
โข Project Page: https://github.com/pokerme7777/Compositional-Visual-Reasoning-Survey
โข Github: https://github.com/pokerme7777/Compositional-Visual-Reasoning-Survey
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 24
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17298
โข PDF: https://arxiv.org/pdf/2508.17298
โข Project Page: https://github.com/pokerme7777/Compositional-Visual-Reasoning-Survey
โข Github: https://github.com/pokerme7777/Compositional-Visual-Reasoning-Survey
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: Agent Lightning: Train ANY AI Agents with Reinforcement Learning
๐น Publication Date: Published on Aug 5
๐น Abstract: Agent Lightning is a flexible RL framework for training LLMs in various agents, using a hierarchical RL algorithm and decoupling execution from training to handle complex interactions. AI-generated summary We present Agent Lightning, a flexible and extensible framework that enables Reinforcement Learning (RL)-based training of Large Language Models (LLMs) for any AI agent. Unlike existing methods that tightly couple RL training with agent or rely on sequence concatenation with masking, Agent Lightning achieves complete decoupling between agent execution and training, allowing seamless integration with existing agents developed via diverse ways (e.g., using frameworks like LangChain, OpenAI Agents SDK, AutoGen, and building from scratch) with almost ZERO code modifications. By formulating agent execution as Markov decision process , we define an unified data interface and propose a hierarchical RL algorithm , LightningRL, which contains a credit assignment module, allowing us to decompose trajectories generated by ANY agents into training transition. This enables RL to handle complex interaction logic, such as multi-agent scenarios and dynamic workflows. For the system design, we introduce a Training-Agent Disaggregation architecture , and brings agent observability frameworks into agent runtime, providing a standardized agent finetuning interface. Experiments across text-to-SQL , retrieval-augmented generation, and math tool-use tasks demonstrate stable, continuous improvements, showcasing the framework's potential for real-world agent training and deployment.
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.03680
โข PDF: https://arxiv.org/pdf/2508.03680
โข Project Page: https://www.microsoft.com/en-us/research/project/agent-lightning/
โข Github: https://github.com/microsoft/agent-lightning
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 5
๐น Abstract: Agent Lightning is a flexible RL framework for training LLMs in various agents, using a hierarchical RL algorithm and decoupling execution from training to handle complex interactions. AI-generated summary We present Agent Lightning, a flexible and extensible framework that enables Reinforcement Learning (RL)-based training of Large Language Models (LLMs) for any AI agent. Unlike existing methods that tightly couple RL training with agent or rely on sequence concatenation with masking, Agent Lightning achieves complete decoupling between agent execution and training, allowing seamless integration with existing agents developed via diverse ways (e.g., using frameworks like LangChain, OpenAI Agents SDK, AutoGen, and building from scratch) with almost ZERO code modifications. By formulating agent execution as Markov decision process , we define an unified data interface and propose a hierarchical RL algorithm , LightningRL, which contains a credit assignment module, allowing us to decompose trajectories generated by ANY agents into training transition. This enables RL to handle complex interaction logic, such as multi-agent scenarios and dynamic workflows. For the system design, we introduce a Training-Agent Disaggregation architecture , and brings agent observability frameworks into agent runtime, providing a standardized agent finetuning interface. Experiments across text-to-SQL , retrieval-augmented generation, and math tool-use tasks demonstrate stable, continuous improvements, showcasing the framework's potential for real-world agent training and deployment.
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.03680
โข PDF: https://arxiv.org/pdf/2508.03680
โข Project Page: https://www.microsoft.com/en-us/research/project/agent-lightning/
โข Github: https://github.com/microsoft/agent-lightning
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: MV-RAG: Retrieval Augmented Multiview Diffusion
๐น Publication Date: Published on Aug 22
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.16577
โข PDF: https://arxiv.org/pdf/2508.16577
โข Project Page: https://yosefdayani.github.io/MV-RAG/
โข Github: https://github.com/yosefdayani/MV-RAG
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 22
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.16577
โข PDF: https://arxiv.org/pdf/2508.16577
โข Project Page: https://yosefdayani.github.io/MV-RAG/
โข Github: https://github.com/yosefdayani/MV-RAG
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: MEENA (PersianMMMU): Multimodal-Multilingual Educational Exams for N-level Assessment
๐น Publication Date: Published on Aug 24
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17290
โข PDF: https://arxiv.org/pdf/2508.17290
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 24
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17290
โข PDF: https://arxiv.org/pdf/2508.17290
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
โค1
๐น Title: German4All - A Dataset and Model for Readability-Controlled Paraphrasing in German
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17973
โข PDF: https://arxiv.org/pdf/2508.17973
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17973
โข PDF: https://arxiv.org/pdf/2508.17973
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
โค1
๐น Title: Beyond Memorization: Extending Reasoning Depth with Recurrence, Memory and Test-Time Compute Scaling
๐น Publication Date: Published on Aug 22
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.16745
โข PDF: https://arxiv.org/pdf/2508.16745
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 22
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.16745
โข PDF: https://arxiv.org/pdf/2508.16745
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
โค1
๐น Title: Limitations of Normalization in Attention Mechanism
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17821
โข PDF: https://arxiv.org/pdf/2508.17821
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17821
โข PDF: https://arxiv.org/pdf/2508.17821
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Title: MeshSplat: Generalizable Sparse-View Surface Reconstruction via Gaussian Splatting
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17811
โข PDF: https://arxiv.org/pdf/2508.17811
โข Project Page: https://hanzhichang.github.io/meshsplat_web
โข Github: https://hanzhichang.github.io/meshsplat_web
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 25
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17811
โข PDF: https://arxiv.org/pdf/2508.17811
โข Project Page: https://hanzhichang.github.io/meshsplat_web
โข Github: https://hanzhichang.github.io/meshsplat_web
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
โค1
๐น Title: REGEN: Real-Time Photorealism Enhancement in Games via a Dual-Stage Generative Network Framework
๐น Publication Date: Published on Aug 23
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17061
โข PDF: https://arxiv.org/pdf/2508.17061
โข Github: https://github.com/stefanos50/REGEN
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 23
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.17061
โข PDF: https://arxiv.org/pdf/2508.17061
โข Github: https://github.com/stefanos50/REGEN
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
โค2
Forwarded from ENG. Hussein Sheikho
Thordata provides the perfect solution for all your data scraping needs!
Enjoy secure, uninterrupted scraping with our rotating and sticky IPs.
Perfect for avoiding blocks and handling high-volume requests.
Access over 195 countries with advanced targeting options to pinpoint your ideal IPs, whether by country, state, city, or ASN.
Get access to unlimited bandwidth and a 99.9% uptime guaranteeโideal for seamless, fast data collection.
Support for SOCKS5 and HTTP(S) protocols, ensuring compatibility with all your favorite scraping tools and services.
๐ง Start experiencing Thordataโs https://www.thordata.com/?ls=DhthVzyG&lk=Data power in your data science workflows today!
Whether itโs market research, machine learning, or competitive analysisโThordata is your trusted partner in efficient, scalable data scraping.
Please open Telegram to view this post
VIEW IN TELEGRAM
Thordata
Thordata - High-Quality Proxy Service for Web Data Scraping
Thordata's precision proxy solution was chosen to ensure seamless data collection. Enjoy the best prices and services tailored to your needs.
โค4
๐น Title: If We May De-Presuppose: Robustly Verifying Claims through Presupposition-Free Question Decomposition
๐น Publication Date: Published on Aug 22
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.16838
โข PDF: https://arxiv.org/pdf/2508.16838
โข Github: https://github.com/dipta007/De-Presuppose
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT
๐น Publication Date: Published on Aug 22
๐น Paper Links:
โข arXiv Page: https://arxiv.org/abs/2508.16838
โข PDF: https://arxiv.org/pdf/2508.16838
โข Github: https://github.com/dipta007/De-Presuppose
๐น Datasets citing this paper:
No datasets found
๐น Spaces citing this paper:
No spaces found
==================================
For more data science resources:
โ https://t.me/DataScienceT