ML Research Hub
32.9K subscribers
4.37K photos
269 videos
23 files
4.73K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ–₯ Chat Downloader

A simple tool used to retrieve chat messages from livestreams, videos, clips and past broadcasts.

- YouTube.com
- Zoom.us
- Facebook.com
- Twitch.tv

$ pip install chat-downloader

Using:
# termimal
$ chat_downloader https://www.youtube.com/watch?v=video_link --output chat.json


# Python script
from chat_downloader import ChatDownloader

url = 'https://www.youtube.com/watch?v=video_link'
chat = ChatDownloader().get_chat(url)

for message in chat:
chat.print_formatted(message)


πŸ–₯ Github
πŸ“ Docs

https://t.me/DataScienceT
❀5πŸ‘2
πŸ–₯ Tkinter Designer

An easy and fast way to create a Python GUI 🐍

πŸ–₯ Github

https://t.me/DataScienceT
πŸ‘6❀2
Benchmarking Test-Time Adaptation against Distribution Shifts in Image Classification

πŸ–₯ Github: https://github.com/yuyongcan/benchmark-tta

⏩ Paper: https://arxiv.org/pdf/2307.03133v1.pdf

πŸ’¨ Dataset: https://paperswithcode.com/dataset/imagenet

https://t.me/DataScienceT
❀2πŸ‘2
πŸ”Ž DeepOnto: A Python Package for Ontology Engineering with Deep Learning

A package for ontology engineering with deep learning and language model.

pip install deeponto

πŸ–₯ Github: https://github.com/KRR-Oxford/DeepOnto
πŸ“Œ Project: https://krr-oxford.github.io/DeepOnto/

πŸ“• Paper: https://arxiv.org/abs/2307.03067v1

πŸš€ Dataset: https://paperswithcode.com/dataset/ontolama

https://t.me/DataScienceT
❀3πŸ‘2
Top 6 Algorithms Every Software Engineer Should Know

1) Binary Search Algorithm.

2) Bubble Sort Algorithm.

3) Merge Sort Algorithm

4) Depth-first Search Algorithm

5) Dijkstra’s Algorithm

6) Randomized Algorithm

https://t.me/DataScienceT
❀7πŸ‘2
ML Research Hub pinned Deleted message
⭐️ InPars Toolkit: A Unified and Reproducible Synthetic Data Generation Pipeline for Neural Information Retrieval.

pip install inpars

πŸ–₯ Github: https://github.com/zetaalphavector/inpars

πŸ“• Paper: https://arxiv.org/abs/2307.04601v1

πŸš€ Dataset: https://paperswithcode.com/dataset/beir

https://t.me/DataScienceT
πŸ‘3❀2
πŸ“ƒ File Transfer using UDP Sockets in Python.

https://t.me/DataScienceT
πŸ‘3πŸ†2
πŸ‘3
πŸ”₯ Generative Pretraining in Multimodality

Model can take in any single-modality or multimodal data input indiscriminately through a one-model-for-all autoregressive training process.

πŸ–₯ Github: https://github.com/baaivision/emu

πŸ“• Paper: https://arxiv.org/abs/2307.05222v1

πŸš€ Dataset: https://paperswithcode.com/dataset/mmc4

https://t.me/DataScienceT
πŸ‘2❀1
Deep Learning Course Notes.pdf
19.1 MB
Coursera's Deep Learning course Notes by Andrew Ng.

@CodeProgrammer
πŸ‘6❀2
This media is not supported in your browser
VIEW IN TELEGRAM
AnimateDiff

Effective framework to animate most of existing personalized text-to-image models once for all, saving the efforts in model-specific tuning.

πŸ–₯ Github: https://github.com/guoyww/animatediff/

πŸ–₯ Colab: https://colab.research.google.com/github/camenduru/AnimateDiff-colab/blob/main/AnimateDiff_colab.ipynb

πŸ“• Paper: https://arxiv.org/abs/2307.04725

πŸš€ Project: https://animatediff.github.io/

https://t.me/DataScienceT
πŸ‘2