Data Science Jupyter Notebooks
11.8K subscribers
289 photos
43 videos
9 files
853 links
Explore the world of Data Science through Jupyter Notebooksโ€”insights, tutorials, and tools to boost your data journey. Code, analyze, and visualize smarter with every post.
Download Telegram
๐Ÿ”ฅ Trending Repository: pytorch

๐Ÿ“ Description: Tensors and Dynamic neural networks in Python with strong GPU acceleration

๐Ÿ”— Repository URL: https://github.com/pytorch/pytorch

๐ŸŒ Website: https://pytorch.org

๐Ÿ“– Readme: https://github.com/pytorch/pytorch#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 94.5K stars
๐Ÿ‘€ Watchers: 1.8k
๐Ÿด Forks: 25.8K forks

๐Ÿ’ป Programming Languages: Python - C++ - Cuda - C - Objective-C++ - CMake

๐Ÿท๏ธ Related Topics:
#python #machine_learning #deep_learning #neural_network #gpu #numpy #autograd #tensor


==================================
๐Ÿง  By: https://t.me/DataScienceM
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC

element = WebDriverWait(driver, 10).until(
EC.presence_of_element_located((By.ID, "myDynamicElement"))
)

โ€ข Get the page source after JavaScript has executed.
dynamic_html = driver.page_source

โ€ข Close the browser window.
driver.quit()


VII. Common Tasks & Best Practices

โ€ข Handle pagination by finding the "Next" link.
next_page_url = soup.find('a', text='Next')['href']

โ€ข Save data to a CSV file.
import csv
with open('data.csv', 'w', newline='', encoding='utf-8') as f:
writer = csv.writer(f)
writer.writerow(['Title', 'Link'])
# writer.writerow([title, url]) in a loop

โ€ข Save data to CSV using pandas.
import pandas as pd
df = pd.DataFrame(data, columns=['Title', 'Link'])
df.to_csv('data.csv', index=False)

โ€ข Use a proxy with requests.
proxies = {'http': 'http://10.10.1.10:3128', 'https': 'http://10.10.1.10:1080'}
requests.get('http://example.com', proxies=proxies)

โ€ข Pause between requests to be polite.
import time
time.sleep(2) # Pause for 2 seconds

โ€ข Handle JSON data from an API.
json_response = requests.get('https://api.example.com/data').json()

โ€ข Download a file (like an image).
img_url = 'http://example.com/image.jpg'
img_data = requests.get(img_url).content
with open('image.jpg', 'wb') as handler:
handler.write(img_data)

โ€ข Parse a sitemap.xml to find all URLs.
# Get the sitemap.xml file and parse it like any other XML/HTML to extract <loc> tags.


VIII. Advanced Frameworks (Scrapy)

โ€ข Create a Scrapy spider (conceptual command).
scrapy genspider example example.com

โ€ข Define a parse method to process the response.
# In your spider class:
def parse(self, response):
# parsing logic here
pass

โ€ข Extract data using Scrapy's CSS selectors.
titles = response.css('h1::text').getall()

โ€ข Extract data using Scrapy's XPath selectors.
links = response.xpath('//a/@href').getall()

โ€ข Yield a dictionary of scraped data.
yield {'title': response.css('title::text').get()}

โ€ข Follow a link to parse the next page.
next_page = response.css('li.next a::attr(href)').get()
if next_page is not None:
yield response.follow(next_page, callback=self.parse)

โ€ข Run a spider from the command line.
scrapy crawl example -o output.json

โ€ข Pass arguments to a spider.
scrapy crawl example -a category=books

โ€ข Create a Scrapy Item for structured data.
import scrapy
class ProductItem(scrapy.Item):
name = scrapy.Field()
price = scrapy.Field()

โ€ข Use an Item Loader to populate Items.
from scrapy.loader import ItemLoader
loader = ItemLoader(item=ProductItem(), response=response)
loader.add_css('name', 'h1.product-name::text')


#Python #WebScraping #BeautifulSoup #Selenium #Requests

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
By: @DataScienceN โœจ
โค3
๐Ÿ”ฅ Trending Repository: localstack

๐Ÿ“ Description: ๐Ÿ’ป A fully functional local AWS cloud stack. Develop and test your cloud & Serverless apps offline

๐Ÿ”— Repository URL: https://github.com/localstack/localstack

๐ŸŒ Website: https://localstack.cloud

๐Ÿ“– Readme: https://github.com/localstack/localstack#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 61.1K stars
๐Ÿ‘€ Watchers: 514
๐Ÿด Forks: 4.3K forks

๐Ÿ’ป Programming Languages: Python - Shell - Makefile - ANTLR - JavaScript - Java

๐Ÿท๏ธ Related Topics:
#python #testing #aws #cloud #continuous_integration #developer_tools #localstack


==================================
๐Ÿง  By: https://t.me/DataScienceM
๐Ÿ”ฅ Trending Repository: TrendRadar

๐Ÿ“ Description: ๐ŸŽฏ ๅ‘Šๅˆซไฟกๆฏ่ฟ‡่ฝฝ๏ผŒAI ๅŠฉไฝ ็œ‹ๆ‡‚ๆ–ฐ้—ป่ต„่ฎฏ็ƒญ็‚น๏ผŒ็ฎ€ๅ•็š„่ˆ†ๆƒ…็›‘ๆŽงๅˆ†ๆž - ๅคšๅนณๅฐ็ƒญ็‚น่šๅˆ+ๅŸบไบŽ MCP ็š„AIๅˆ†ๆžๅทฅๅ…ทใ€‚็›‘ๆŽง35ไธชๅนณๅฐ๏ผˆๆŠ–้Ÿณใ€็ŸฅไนŽใ€B็ซ™ใ€ๅŽๅฐ”่ก—่ง้—ปใ€่ดข่”็คพ็ญ‰๏ผ‰๏ผŒๆ™บ่ƒฝ็ญ›้€‰+่‡ชๅŠจๆŽจ้€+AIๅฏน่ฏๅˆ†ๆž๏ผˆ็”จ่‡ช็„ถ่ฏญ่จ€ๆทฑๅบฆๆŒ–ๆŽ˜ๆ–ฐ้—ป๏ผš่ถ‹ๅŠฟ่ฟฝ่ธชใ€ๆƒ…ๆ„Ÿๅˆ†ๆžใ€็›ธไผผๆฃ€็ดข็ญ‰13็งๅทฅๅ…ท๏ผ‰ใ€‚ๆ”ฏๆŒไผไธšๅพฎไฟก/้ฃžไนฆ/้’‰้’‰/Telegram/้‚ฎไปถ/ntfyๆŽจ้€๏ผŒ30็ง’็ฝ‘้กต้ƒจ็ฝฒ๏ผŒ1ๅˆ†้’Ÿๆ‰‹ๆœบ้€š็Ÿฅ๏ผŒๆ— ้œ€็ผ–็จ‹ใ€‚ๆ”ฏๆŒDocker้ƒจ็ฝฒโญ ่ฎฉ็ฎ—ๆณ•ไธบไฝ ๆœๅŠก๏ผŒ็”จAI็†่งฃ็ƒญ็‚น

๐Ÿ”— Repository URL: https://github.com/sansan0/TrendRadar

๐ŸŒ Website: https://github.com/sansan0

๐Ÿ“– Readme: https://github.com/sansan0/TrendRadar#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 6K stars
๐Ÿ‘€ Watchers: 21
๐Ÿด Forks: 4.5K forks

๐Ÿ’ป Programming Languages: Python - HTML - Batchfile - Shell - Dockerfile

๐Ÿท๏ธ Related Topics:
#python #docker #mail #news #telegram_bot #mcp #data_analysis #trending_topics #wechat_robot #dingtalk_robot #ntfy #hot_news #feishu_robot #mcp_server


==================================
๐Ÿง  By: https://t.me/DataScienceM
๐Ÿ”ฅ Trending Repository: LEANN

๐Ÿ“ Description: RAG on Everything with LEANN. Enjoy 97% storage savings while running a fast, accurate, and 100% private RAG application on your personal device.

๐Ÿ”— Repository URL: https://github.com/yichuan-w/LEANN

๐Ÿ“– Readme: https://github.com/yichuan-w/LEANN#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 3.9K stars
๐Ÿ‘€ Watchers: 34
๐Ÿด Forks: 403 forks

๐Ÿ’ป Programming Languages: Python

๐Ÿท๏ธ Related Topics:
#python #privacy #ai #offline_first #localstorage #vectors #faiss #rag #vector_search #vector_database #llm #langchain #llama_index #retrieval_augmented_generation #ollama #gpt_oss


==================================
๐Ÿง  By: https://t.me/DataScienceM
๐Ÿ”ฅ Trending Repository: PythonRobotics

๐Ÿ“ Description: Python sample codes and textbook for robotics algorithms.

๐Ÿ”— Repository URL: https://github.com/AtsushiSakai/PythonRobotics

๐ŸŒ Website: https://atsushisakai.github.io/PythonRobotics/

๐Ÿ“– Readme: https://github.com/AtsushiSakai/PythonRobotics#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 26.3K stars
๐Ÿ‘€ Watchers: 509
๐Ÿด Forks: 7K forks

๐Ÿ’ป Programming Languages: Python

๐Ÿท๏ธ Related Topics:
#python #algorithm #control #robot #localization #robotics #mapping #animation #path_planning #slam #autonomous_driving #autonomous_vehicles #ekf #hacktoberfest #cvxpy #autonomous_navigation


==================================
๐Ÿง  By: https://t.me/DataScienceM
โ€ข Error Handling: Always wrap dispatch logic in try-except blocks to gracefully handle network issues, authentication failures, or incorrect receiver addresses.
โ€ข Security: Never hardcode credentials directly in scripts. Use environment variables (os.environ.get()) or a secure configuration management system. Ensure starttls() is called for encrypted communication.
โ€ข Rate Limits: SMTP servers impose limits on the number of messages one can send per hour or day. Implement pauses (time.sleep()) between dispatches to respect these limits and avoid being flagged as a spammer.
โ€ข Opt-Outs: For promotional dispatches, ensure compliance with regulations (like GDPR, CAN-SPAM) by including clear unsubscribe options.

Concluding Thoughts

Automating electronic message dispatch empowers users to scale their communication efforts with remarkable efficiency. By leveraging Python's native capabilities, anyone can construct a powerful, flexible system for broadcasting anything from routine updates to extensive promotional campaigns. The journey into programmatic dispatch unveils a world of streamlined operations and enhanced communicative reach.

#python #automation #email #smtplib #emailautomation #programming #scripting #communication #developer #efficiency

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
By: @DataScienceN โœจ
๐Ÿ”ฅ Trending Repository: Memori

๐Ÿ“ Description: Open-Source Memory Engine for LLMs, AI Agents & Multi-Agent Systems

๐Ÿ”— Repository URL: https://github.com/GibsonAI/Memori

๐ŸŒ Website: https://memorilabs.ai

๐Ÿ“– Readme: https://github.com/GibsonAI/Memori#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 2.3K stars
๐Ÿ‘€ Watchers: 18
๐Ÿด Forks: 216 forks

๐Ÿ’ป Programming Languages: Python - PLpgSQL

๐Ÿท๏ธ Related Topics:
#python #agent #awesome #state_management #ai #memory #memory_management #hacktoberfest #long_short_term_memory #rag #llm #memori_ai #hacktoberfest2025 #chatgpt #aiagent


==================================
๐Ÿง  By: https://t.me/DataScienceM