Machine Learning
39.5K subscribers
3.92K photos
34 videos
45 files
1.32K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
๐Ÿ“Œ How to Keep MCPs Useful in Agentic Pipelines

๐Ÿ—‚ Category: AGENTIC AI

๐Ÿ•’ Date: 2026-01-03 | โฑ๏ธ Read time: 10 min read

Check the tools your LLM uses before replacing it with just a more powerful model

#DataScience #AI #Python
โค4๐Ÿ‘1
๐Ÿ”– 40 NumPy methods that cover 95% of tasks

A convenient cheat sheet for those who work with data analysis and ML.

Here are collected the main functions for:
โ–ถ๏ธ Creating and modifying arrays;
โ–ถ๏ธ Mathematical operations;
โ–ถ๏ธ Working with matrices and vectors;
โ–ถ๏ธ Sorting and searching for values.


Save it for yourself โ€” it will come in handy when working with NumPy.

tags: #NumPy #Python

โžก @DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
โค6
๐Ÿ“Œ Prompt Engineering vs RAG for Editing Resumes

๐Ÿ—‚ Category: LLM APPLICATIONS

๐Ÿ•’ Date: 2026-01-04 | โฑ๏ธ Read time: 12 min read

Running a code-free comparison in Azure

#DataScience #AI #Python
โค1
๐Ÿ“Œ How to Filter for Dates, Including or Excluding Future Dates, in Semantic Models

๐Ÿ—‚ Category: DATA ANALYSIS

๐Ÿ•’ Date: 2026-01-04 | โฑ๏ธ Read time: 5 min read

It is common to have either planning data or the previous yearโ€™s data displayed beyondโ€ฆ

#DataScience #AI #Python
nature papers: 1400$

Q1 and  Q2 papers    900$

Q3 and Q4 papers   500$

Doctoral thesis (complete)    700$

M.S thesis         300$

paper simulation   200$

Contact me
https://t.me/m/-nTmpj5vYzNk
Media is too big
VIEW IN TELEGRAM
OnSpace Mobile App builder: Build AI Apps in minutes

Visit website: https://www.onspace.ai/?via=tg_datas
Or Download app:https://onspace.onelink.me/za8S/h1jb6sb9?c=datas

With OnSpace, you can build website or AI Mobile Apps by chatting with AI, and publish to PlayStore or AppStore.

What will you get:
โœ”๏ธ Create app or website by chatting with AI;
โœ”๏ธ Integrate with Any top AI power just by giving order (like Sora2, Nanobanan Pro & Gemini 3 Pro);
โœ”๏ธ Download APK,AAB file, publish to AppStore.
โœ”๏ธ Add payments and monetize like in-app-purchase and Stripe.
โœ”๏ธ Functional login & signup.
โœ”๏ธ Database + dashboard in minutes.
โœ”๏ธ Full tutorial on YouTube and within 1 day customer service
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2
๐Ÿ“Œ Stop Blaming the Data: A Better Way to Handle Covariance Shift

๐Ÿ—‚ Category: DATA SCIENCE

๐Ÿ•’ Date: 2026-01-05 | โฑ๏ธ Read time: 9 min read

Instead of using shift as an excuse for poor performance, use Inverse Probability Weighting toโ€ฆ

#DataScience #AI #Python
โค1
๐Ÿ“Œ YOLOv1 Loss Function Walkthrough: Regression for All

๐Ÿ—‚ Category: ARTIFICIAL INTELLIGENCE

๐Ÿ•’ Date: 2026-01-05 | โฑ๏ธ Read time: 26 min read

An explanation of how YOLOv1 measures the correctness of its object detection and classification predictions

#DataScience #AI #Python
๐Ÿ“Œ How to Optimize Your AI Coding Agent Context

๐Ÿ—‚ Category: PROGRAMMING

๐Ÿ•’ Date: 2026-01-06 | โฑ๏ธ Read time: 7 min read

Make your coding agents more efficient

#DataScience #AI #Python
๐Ÿ“Œ GliNER2: Extracting Structured Information from Text

๐Ÿ—‚ Category: NATURAL LANGUAGE PROCESSING

๐Ÿ•’ Date: 2026-01-06 | โฑ๏ธ Read time: 11 min read

From unstructured text to structured Knowledge Graphs

#DataScience #AI #Python
โค1
๐Ÿ“Œ Feature Detection, Part 3: Harris Corner Detection

๐Ÿ—‚ Category: MACHINE LEARNING

๐Ÿ•’ Date: 2026-01-05 | โฑ๏ธ Read time: 7 min read

Finding the most informative points in images

#DataScience #AI #Python
โค2
๐Ÿ“Œ Measuring What Matters with NeMo Agent Toolkit

๐Ÿ—‚ Category: LLM APPLICATIONS

๐Ÿ•’ Date: 2026-01-06 | โฑ๏ธ Read time: 13 min read

A practical guide to observability, evaluations, and model comparisons

#DataScience #AI #Python
๐Ÿ“Œ The Best Data Scientists Are Always Learning

๐Ÿ—‚ Category: DATA SCIENCE

๐Ÿ•’ Date: 2026-01-06 | โฑ๏ธ Read time: 10 min read

Part 2: Avoiding burnout, learning strategies and the superpower of solitude

#DataScience #AI #Python
nature papers: 1400$

Q1 and  Q2 papers    900$

Q3 and Q4 papers   500$

Doctoral thesis (complete)    700$

M.S thesis         300$

paper simulation   200$

Contact me
https://t.me/m/-nTmpj5vYzNk
๐Ÿ“Œ HNSW at Scale: Why Your RAG System Gets Worse as the Vector Database Grows

๐Ÿ—‚ Category: LARGE LANGUAGE MODELS

๐Ÿ•’ Date: 2026-01-07 | โฑ๏ธ Read time: 18 min read

How approximate vector search silently degrades Recallโ€”and what to do about It

#DataScience #AI #Python
๐Ÿ“Œ I Evaluated Half a Million Credit Records with Federated Learning. Hereโ€™s What I Found

๐Ÿ—‚ Category: DATA SCIENCE

๐Ÿ•’ Date: 2026-01-07 | โฑ๏ธ Read time: 12 min read

Why privacy breaks fairness at small scaleโ€”and how collaboration fixes both without sharing a singleโ€ฆ

#DataScience #AI #Python
๐Ÿ“Œ Probabilistic Multi-Variant Reasoning: Turning Fluent LLM Answers Into Weighted Options

๐Ÿ—‚ Category: LARGE LANGUAGE MODELS

๐Ÿ•’ Date: 2026-01-07 | โฑ๏ธ Read time: 21 min read

Human-guided AI collaboration

#DataScience #AI #Python
โค1
๐’๐ฎ๐ฉ๐ฉ๐จ๐ซ๐ญ_๐•๐ž๐œ๐ญ๐จ๐ซ_๐Œ๐š๐œ๐ก๐ข๐ง๐ž๐ฌ_๐’๐•๐Œโฃ.pdf
5.8 MB
๐Ÿ“ ๐’๐ฎ๐ฉ๐ฉ๐จ๐ซ๐ญ ๐•๐ž๐œ๐ญ๐จ๐ซ ๐Œ๐š๐œ๐ก๐ข๐ง๐ž๐ฌ (๐’๐•๐Œ)โฃ

๐Ÿ”น What I covered todayโฃ
What SVM is and how it worksโฃ
Concept of hyperplane, margin, and support vectorsโฃ
Hard margin vs Soft marginโฃ
Role of kernel trickโฃ
โฃ
When SVM performs better than other classifiersโฃ
โฃ
๐ŸŽฏ ๐“๐จ๐ฉ ๐Ÿ๐ŸŽ ๐ˆ๐ง๐ญ๐ž๐ซ๐ฏ๐ข๐ž๐ฐ ๐๐ฎ๐ž๐ฌ๐ญ๐ข๐จ๐ง๐ฌ (๐Œ๐ฎ๐ฌ๐ญ-๐Š๐ง๐จ๐ฐ)โฃ
โฃ
1๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜š๐˜ถ๐˜ฑ๐˜ฑ๐˜ฐ๐˜ณ๐˜ต ๐˜๐˜ฆ๐˜ค๐˜ต๐˜ฐ๐˜ณ ๐˜”๐˜ข๐˜ค๐˜ฉ๐˜ช๐˜ฏ๐˜ฆ (๐˜š๐˜๐˜”)?โฃ
2๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ข๐˜ณ๐˜ฆ ๐˜ด๐˜ถ๐˜ฑ๐˜ฑ๐˜ฐ๐˜ณ๐˜ต ๐˜ท๐˜ฆ๐˜ค๐˜ต๐˜ฐ๐˜ณ๐˜ด?โฃ
3๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜ข ๐˜ฎ๐˜ข๐˜ณ๐˜จ๐˜ช๐˜ฏ ๐˜ช๐˜ฏ ๐˜š๐˜๐˜”?โฃ
4๏ธโƒฃ ๐˜‹๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ค๐˜ฆ ๐˜ฃ๐˜ฆ๐˜ต๐˜ธ๐˜ฆ๐˜ฆ๐˜ฏ ๐˜ฉ๐˜ข๐˜ณ๐˜ฅ ๐˜ฎ๐˜ข๐˜ณ๐˜จ๐˜ช๐˜ฏ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ด๐˜ฐ๐˜ง๐˜ต ๐˜ฎ๐˜ข๐˜ณ๐˜จ๐˜ช๐˜ฏ?โฃ
5๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฌ๐˜ฆ๐˜ณ๐˜ฏ๐˜ฆ๐˜ญ ๐˜ต๐˜ณ๐˜ช๐˜ค๐˜ฌ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ธ๐˜ฉ๐˜บ ๐˜ช๐˜ด ๐˜ช๐˜ต ๐˜ฏ๐˜ฆ๐˜ฆ๐˜ฅ๐˜ฆ๐˜ฅ?โฃ
6๏ธโƒฃ ๐˜Š๐˜ฐ๐˜ฎ๐˜ฎ๐˜ฐ๐˜ฏ ๐˜ฌ๐˜ฆ๐˜ณ๐˜ฏ๐˜ฆ๐˜ญ๐˜ด ๐˜ถ๐˜ด๐˜ฆ๐˜ฅ ๐˜ช๐˜ฏ ๐˜š๐˜๐˜” (๐˜“๐˜ช๐˜ฏ๐˜ฆ๐˜ข๐˜ณ, ๐˜—๐˜ฐ๐˜ญ๐˜บ๐˜ฏ๐˜ฐ๐˜ฎ๐˜ช๐˜ข๐˜ญ, ๐˜™๐˜‰๐˜)?โฃ
7๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜ต๐˜ฉ๐˜ฆ ๐˜ณ๐˜ฐ๐˜ญ๐˜ฆ ๐˜ฐ๐˜ง ๐˜Š (๐˜ณ๐˜ฆ๐˜จ๐˜ถ๐˜ญ๐˜ข๐˜ณ๐˜ช๐˜ป๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜ฑ๐˜ข๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ต๐˜ฆ๐˜ณ)?โฃ
8๏ธโƒฃ ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ด ๐˜จ๐˜ข๐˜ฎ๐˜ฎ๐˜ข ๐˜ช๐˜ฏ ๐˜™๐˜‰๐˜ ๐˜ฌ๐˜ฆ๐˜ณ๐˜ฏ๐˜ฆ๐˜ญ?โฃ
9๏ธโƒฃ ๐˜Š๐˜ข๐˜ฏ #๐˜š๐˜๐˜” ๐˜ฃ๐˜ฆ ๐˜ถ๐˜ด๐˜ฆ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ณ๐˜ฆ๐˜จ๐˜ณ๐˜ฆ๐˜ด๐˜ด๐˜ช๐˜ฐ๐˜ฏ? (๐˜š๐˜๐˜™)โฃ
๐Ÿ”Ÿ ๐˜ž๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ด๐˜ฉ๐˜ฐ๐˜ถ๐˜ญ๐˜ฅ ๐˜บ๐˜ฐ๐˜ถ ๐˜ข๐˜ท๐˜ฐ๐˜ช๐˜ฅ ๐˜ถ๐˜ด๐˜ช๐˜ฏ๐˜จ ๐˜š๐˜๐˜”?โฃ

https://t.me/CodeProgrammer โœˆ๏ธ
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ“Œ Why Supply Chain is the Best Domain for Data Scientists in 2026 (And How to Learn It)

๐Ÿ—‚ Category: DATA SCIENCE

๐Ÿ•’ Date: 2026-01-07 | โฑ๏ธ Read time: 13 min read

My take after 10 years in Supply Chain on why this can be an excellentโ€ฆ

#DataScience #AI #Python
โค2