Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence
37.3K subscribers
283 photos
76 files
336 links
Free Datasets For Data Science Projects & Portfolio

Buy ads: https://telega.io/c/DataPortfolio

For Promotions/ads: @coderfun @love_data
Download Telegram
๐Ÿ”’ Dataset Name: Employee Data Analysis

๐Ÿ” Unlocking Insights for a Thriving Workplace

๐Ÿš€ Our extensive collection of datasets provides a deep dive into different aspects of employee engagement and organizational dynamics.

๐Ÿ’ก Our extensive collection of datasets provides a deep dive into different aspects of employee engagement and organizational dynamics.

๐ŸคŒ From: Kaggle

๐Ÿค– Size: 120 kB
โค5๐Ÿ‘4
๐Ÿ”ฅ Step-by-step Data Analysis Projects with SQL



Below are popular data projects from Kaggle, GitHub and Medium and YouTube. They will:

- Help you gain skills in working with real data
- Introduce you to SQL for data analysis
- Inspire you to undertake your own data analysis projects



๐Ÿ—บ Real World Fake Data Analysis

๐Ÿ  Housing sales in Nashville

๐Ÿ›’ Walmart Sales Analysis SQL Project

๐Ÿงณ Alex the Analyst SQL Project

๐Ÿค‘ Superstore Sales Analysis using SQL

๐Ÿ’ธ International Debt Analysis using SQL

โšฝ๏ธ Soccer Game Analysis using SQL

๐ŸŒ World Population Analysis 2015 using SQL

๐Ÿ“‰ SQL Project for Data Analysis

๐Ÿš Public Transportation Data Analysis using SQL

๐Ÿ“ธ Instagram User Data Analysis using SQL

๐Ÿ™Œ HR Data Analysis using SQL

๐ŸŽฌ Data Analyst Project: Step-by-step analysis with SQL

๐ŸŽผ Music Store Data Analysis Project Using SQL

โœ… Top 10 SQL Projects with Datasets

โœ… Roadmap to Master SQL


#DataAnalyst #DataAnalytics #DataAnalysis #data_analyst #sql

If you find this useful, give it a
๐Ÿ‘
๐Ÿ‘25โค2
cryptos historical data.zip
26.5 MB
Dataset Name: top 1000 cryptos historical data ( Daily updates )
Instagram fake spammer genuine accounts.zip
6.8 KB
Dataset Name: Instagram fake spammer genuine accounts
    
๐Ÿ‘7โค3
Don't forget to check these 10 SQL projects with corresponding datasets that you could use to practice your SQL skills:

1. Analysis of Sales Data:

(https://www.kaggle.com/kyanyoga/sample-sales-data)

2. HR Analytics:

(https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset)

3. Social Media Analytics:

(https://www.kaggle.com/datasets/ramjasmaurya/top-1000-social-media-channels)

4. Financial Data Analysis:

(https://www.kaggle.com/datasets/nitindatta/finance-data)

5. Healthcare Data Analysis:

(https://www.kaggle.com/cdc/mortality)

6. Customer Relationship Management:

(https://www.kaggle.com/pankajjsh06/ibm-watson-marketing-customer-value-data)

7. Web Analytics:

(https://www.kaggle.com/zynicide/wine-reviews)

8. E-commerce Analysis:

(https://www.kaggle.com/olistbr/brazilian-ecommerce)

9. Supply Chain Management:

(https://www.kaggle.com/datasets/harshsingh2209/supply-chain-analysis)

10. Inventory Management:

(https://www.kaggle.com/datasets?search=inventory+management)

Share this channel with your friends ๐Ÿค๐Ÿคฉ

Join for more -> https://t.me/addlist/ID95piZJZa0wYzk5

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘8โค3
The key to starting your data analysis career:

โŒIt's not your education
โŒIt's not your experience

It's how you apply these principles:

1. Learn the job through "doing"
2. Build a portfolio
3. Make yourself known

No one starts an expert, but everyone can become one.

If you're looking for a career in data analysis, start by:

โŸถ Watching videos
โŸถ Reading experts advice
โŸถ Doing internships
โŸถ Building a portfolio
โŸถ Learning from seniors

You'll be amazed at how fast you'll learn and how quickly you'll become an expert.

So, start today and let the data analysis career begin
๐Ÿ‘8โค4
Here is the list of few projects (found on kaggle). They cover Basics of Python, Advanced Statistics, Supervised Learning (Regression and Classification problems) & Data Science

Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.

1. Basic python and statistics

Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset

2. Advanced Statistics

Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset

3. Supervised Learning

a) Regression Problems

How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview

b) Classification problems

Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking

4. Some helpful Data science projects for beginners

https://www.kaggle.com/c/house-prices-advanced-regression-techniques

https://www.kaggle.com/c/digit-recognizer

https://www.kaggle.com/c/titanic

5. Intermediate Level Data science Projects

Black Friday Data : https://www.kaggle.com/sdolezel/black-friday

Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones

Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset

Million Song Data : https://www.kaggle.com/c/msdchallenge

Census Income Data : https://www.kaggle.com/c/census-income/data

Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset

Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2

Share with credits: https://t.me/sqlproject

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘11โค4
๐’๐๐‹ ๐‚๐š๐ฌ๐ž ๐’๐ญ๐ฎ๐๐ข๐ž๐ฌ ๐Ÿ๐จ๐ซ ๐ˆ๐ง๐ญ๐ž๐ซ๐ฏ๐ข๐ž๐ฐ:

Join for more: https://t.me/sqlanalyst

1. Dannyโ€™s Diner:
Restaurant analytics to understand the customer orders pattern.
Link: https://8weeksqlchallenge.com/case-study-1/

2. Pizza Runner
Pizza shop analytics to optimize the efficiency of the operation
Link: https://8weeksqlchallenge.com/case-study-2/

3. Foodie Fie
Subscription-based food content platform
Link: https://lnkd.in/gzB39qAT

4. Data Bank: Thatโ€™s money
Analytics based on customer activities with the digital bank
Link: https://lnkd.in/gH8pKPyv

5. Data Mart: Fresh is Best
Analytics on Online supermarket
Link: https://lnkd.in/gC5bkcDf

6. Clique Bait: Attention capturing
Analytics on the seafood industry
Link: https://lnkd.in/ggP4JiYG

7. Balanced Tree: Clothing Company
Analytics on the sales performance of clothing store
Link: https://8weeksqlchallenge.com/case-study-7

8. Fresh segments: Extract maximum value
Analytics on online advertising
Link: https://8weeksqlchallenge.com/case-study-8
๐Ÿ‘5โค4
Creating a data science portfolio is a great way to showcase your skills and experience to potential employers. Here are some steps to help you create a strong data science portfolio:

1. Choose relevant projects: Select a few data science projects that demonstrate your skills and interests. These projects can be from your previous work experience, personal projects, or online competitions.

2. Clean and organize your code: Make sure your code is well-documented, organized, and easy to understand. Use comments to explain your thought process and the steps you took in your analysis.

3. Include a variety of projects: Try to include a mix of projects that showcase different aspects of data science, such as data cleaning, exploratory data analysis, machine learning, and data visualization.

4. Create visualizations: Data visualizations can help make your portfolio more engaging and easier to understand. Use tools like Matplotlib, Seaborn, or Tableau to create visually appealing charts and graphs.

5. Write project summaries: For each project, provide a brief summary of the problem you were trying to solve, the dataset you used, the methods you applied, and the results you obtained. Include any insights or recommendations that came out of your analysis.

6. Showcase your technical skills: Highlight the programming languages, libraries, and tools you used in each project. Mention any specific techniques or algorithms you implemented.

7. Link to your code and data: Provide links to your code repositories (e.g., GitHub) and any datasets you used in your projects. This allows potential employers to review your work in more detail.

8. Keep it updated: Regularly update your portfolio with new projects and skills as you gain more experience in data science. This will show that you are actively engaged in the field and continuously improving your skills.

So, start today and let the data analysis career begin
๐Ÿ‘7โค4
Sites to Find Datasets

Below are sites I've found free and public datasets.

Datahub - This site covers a wide range of topics from climate change to entertainment, but it mainly focuses on economic and business data.
Dataset Search - You're able to use Google to search for datasets. It's great if you have a particular topic in mind.
Kaggle - It has variety of free datasets provided by users from everything to arts & entertainment to social science data.
Data Gov - Public data from the US government from everything from crime to healthcare.
Maven Analytics Data Playground - Datasets that are hand picked by Maven's instructors. These datasets can be more fun like analyzing the Harry Potter movies scripts to more business focused like analyzing sales of a pizza place.
Awesome Public Datasets - A list of topic focused public data sources that are high quality. These are collected from blogs, answers, and user responses.
Datacamp Datasets - These datasets are from a variety of fields from real estate to retail. All of the datasets have the data and packages needed.
NASA Data - Has open-data provided to the public from NASA. The dataset pages only hold the metadata and the actual data may be on another NASA site. There will be links to the data in these other locations.
Dataportfolio - Telegram Channel with Free Datasets
Google BigQuery - It's free to sign up and you can practice with plenty of free datasets.
๐Ÿ‘15โค4
Creating a data science portfolio is a great way to showcase your skills and experience to potential employers. Here are some steps to help you create a strong data science portfolio:

1. Choose relevant projects: Select a few data science projects that demonstrate your skills and interests. These projects can be from your previous work experience, personal projects, or online competitions.

2. Clean and organize your code: Make sure your code is well-documented, organized, and easy to understand. Use comments to explain your thought process and the steps you took in your analysis.

3. Include a variety of projects: Try to include a mix of projects that showcase different aspects of data science, such as data cleaning, exploratory data analysis, machine learning, and data visualization.

4. Create visualizations: Data visualizations can help make your portfolio more engaging and easier to understand. Use tools like Matplotlib, Seaborn, or Tableau to create visually appealing charts and graphs.

5. Write project summaries: For each project, provide a brief summary of the problem you were trying to solve, the dataset you used, the methods you applied, and the results you obtained. Include any insights or recommendations that came out of your analysis.

6. Showcase your technical skills: Highlight the programming languages, libraries, and tools you used in each project. Mention any specific techniques or algorithms you implemented.

7. Link to your code and data: Provide links to your code repositories (e.g., GitHub) and any datasets you used in your projects. This allows potential employers to review your work in more detail.

8. Keep it updated: Regularly update your portfolio with new projects and skills as you gain more experience in data science. This will show that you are actively engaged in the field and continuously improving your skills.

By following these steps, you can create a comprehensive and visually appealing data science portfolio that will impress potential employers and help you stand out in the competitive job market.
โค5
Step-by-Step Data Analysis Projects with Python Code


Below are popular data analysis projects from users. They will:

- Help you gain skills in working with real data
- Introduce you to Python libraries for data analysis
- Inspire you for your own data analysis projects

Netflix Data Analysis

Video Game Sales Analysis

Is There a Trend of Increasing Geek Girls?

Let's Discover More About the Olympic Games!

Marketing Analysis

Animal Shelter Data Analysis

Amazon Data Analysis

Billionaire Data Analysis

Credit Card Data Analysis

Pokemon Data Analysis

Spotify Data Analysis. What Does It Take to Hit the Charts
๐Ÿ‘10โค3๐Ÿ”ฅ2
Learning Python for data science can be a rewarding experience. Here are some steps you can follow to get started:

1. Learn the Basics of Python: Start by learning the basics of Python programming language such as syntax, data types, functions, loops, and conditional statements. There are many online resources available for free to learn Python.

2. Understand Data Structures and Libraries: Familiarize yourself with data structures like lists, dictionaries, tuples, and sets. Also, learn about popular Python libraries used in data science such as NumPy, Pandas, Matplotlib, and Scikit-learn.

3. Practice with Projects: Start working on small data science projects to apply your knowledge. You can find datasets online to practice your skills and build your portfolio.

4. Take Online Courses: Enroll in online courses specifically tailored for learning Python for data science. Websites like Coursera, Udemy, and DataCamp offer courses on Python programming for data science.

5. Join Data Science Communities: Join online communities and forums like Stack Overflow, Reddit, or Kaggle to connect with other data science enthusiasts and get help with any questions you may have.

6. Read Books: There are many great books available on Python for data science that can help you deepen your understanding of the subject. Some popular books include "Python for Data Analysis" by Wes McKinney and "Data Science from Scratch" by Joel Grus.

7. Practice Regularly: Practice is key to mastering any skill. Make sure to practice regularly and work on real-world data science problems to improve your skills.

Remember that learning Python for data science is a continuous process, so be patient and persistent in your efforts. Good luck!
โค6๐Ÿ‘2
Please go through this top 10 SQL projects with Datasets that you can practice and can add in your resume

๐Ÿ“Œ1. Social Media Analytics:
(https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset)

๐Ÿš€2. Web Analytics:
(https://www.kaggle.com/zynicide/wine-reviews)

๐Ÿ“Œ3. HR Analytics:
(https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-
attrition-dataset)

๐Ÿš€4. Healthcare Data Analysis:
(https://www.kaggle.com/cdc/mortality)

๐Ÿ“Œ5. E-commerce Analysis:
(https://www.kaggle.com/olistbr/brazilian-ecommerce)

๐Ÿš€6. Inventory Management:
(https://www.kaggle.com/datasets?
search=inventory+management)

๐Ÿ“Œ 7.Customer Relationship Management:
(https://www.kaggle.com/pankajjsh06/ibm-watson-
marketing-customer-value-data)

๐Ÿš€8. Financial Data Analysis:
(https://www.kaggle.com/awaiskalia/banking-database)

๐Ÿ“Œ9. Supply Chain Management:
(https://www.kaggle.com/shashwatwork/procurement-analytics)

๐Ÿš€10. Analysis of Sales Data:
(https://www.kaggle.com/kyanyoga/sample-sales-data)

Small suggestion from my side for non tech students: kindly pick those datasets which you like the subject in general, that way you will be more excited to practice it, instead of just doing it for the sake of resume, you will learn SQL more passionately, since itโ€™s a programming language try to make it more exciting for yourself.

Join for more: https://t.me/DataPortfolio

Hope this piece of information helps you
๐Ÿ‘9
Kaggle Datasets are often too perfect for real-world scenarios.

I'm about to share a method for real-life data analysis.

You see โ€ฆ

โ€ฆ most of the time, a data analyst cleans and transforms data.

So โ€ฆ letโ€™s practice that.

How?

Well โ€ฆ you can use ChatGPT.

Just write this prompt:

Create a downloadable CSV dataset of 10,000 rows of financial credit card transactions with 10 columns of customer data so I can perform some data analysis to segment customers.

Nowโ€ฆ

Download the dataset and start your analysis.

You'll see that, most of the timeโ€ฆ

โ€ฆ numbers donโ€™t match.

There are no patterns.

Data is incorrect and doesnโ€™t make sense.

And thatโ€™s good.

Now you know what a data analyst deals with.

Your job is to make sense of that dataset.

To create a story that justifies the numbers.

This is how you can mimic real-life work using A.I.
๐Ÿ‘13โค7
Creating a data science portfolio is a great way to showcase your skills and experience to potential employers. Here are some steps to help you create a strong data science portfolio:

1. Choose relevant projects: Select a few data science projects that demonstrate your skills and interests. These projects can be from your previous work experience, personal projects, or online competitions.

2. Clean and organize your code: Make sure your code is well-documented, organized, and easy to understand. Use comments to explain your thought process and the steps you took in your analysis.

3. Include a variety of projects: Try to include a mix of projects that showcase different aspects of data science, such as data cleaning, exploratory data analysis, machine learning, and data visualization.

4. Create visualizations: Data visualizations can help make your portfolio more engaging and easier to understand. Use tools like Matplotlib, Seaborn, or Tableau to create visually appealing charts and graphs.

5. Write project summaries: For each project, provide a brief summary of the problem you were trying to solve, the dataset you used, the methods you applied, and the results you obtained. Include any insights or recommendations that came out of your analysis.

6. Showcase your technical skills: Highlight the programming languages, libraries, and tools you used in each project. Mention any specific techniques or algorithms you implemented.

7. Link to your code and data: Provide links to your code repositories (e.g., GitHub) and any datasets you used in your projects. This allows potential employers to review your work in more detail.

8. Keep it updated: Regularly update your portfolio with new projects and skills as you gain more experience in data science. This will show that you are actively engaged in the field and continuously improving your skills.

By following these steps, you can create a comprehensive and visually appealing data science portfolio that will impress potential employers and help you stand out in the competitive job market.
๐Ÿ‘9โค2