Data Analytics
27.9K subscribers
1.19K photos
27 videos
33 files
1.01K links
Dive into the world of Data Analytics – uncover insights, explore trends, and master data-driven decision making.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
This channels is for Programmers, Coders, Software Engineers.

0️⃣ Python
1️⃣ Data Science
2️⃣ Machine Learning
3️⃣ Data Visualization
4️⃣ Artificial Intelligence
5️⃣ Data Analysis
6️⃣ Statistics
7️⃣ Deep Learning
8️⃣ programming Languages

https://t.me/addlist/8_rRW2scgfRhOTc0

https://t.me/Codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
1
Data Analytics
Photo
1. What is the primary purpose of the pandas library?
A. Working with unstructured multimedia data
B. Creating and manipulating structured tabular data
C. Building machine learning models
D. Visualizing neural networks

Correct answer: B.

2. Which pandas object is one-dimensional and enforces a homogeneous data type?
A. DataFrame
B. Index
C. Series
D. Panel

Correct answer: C.

3. How can a pd.Series be best compared to an Excel structure?
A. Entire worksheet
B. Row
C. Column
D. Pivot table

Correct answer: C.

4. Which object in pandas represents labels for rows or columns?
A. Series
B. DataFrame
C. Index
D. ndarray

Correct answer: C.

5. What happens if no index is provided when creating a pd.Series?
A. An error is raised
B. A random index is created
C. A RangeIndex starting at 0 is created
D. Index values must be inferred manually

Correct answer: C.

6. Which argument is used to explicitly set the data type of a pd.Series?
A. type=
B. data_type=
C. dtype=
D. astype=

Correct answer: C.

7. What is the default value of the name attribute of a pd.Series if not provided?
A. Empty string
B. Undefined
C. None
D. "Series"

Correct answer: C.

8. Which structure allows heterogeneous column data types?
A. Series
B. Index
C. ndarray
D. DataFrame

Correct answer: D.

9. When constructing a DataFrame from a dictionary, what do the dictionary keys represent?
A. Row labels
B. Index levels
C. Column labels
D. Data types

Correct answer: C.

10. Which attribute returns the number of rows in a pd.Series?
A. size
B. shape
C. len()
D. index

Correct answer: B.

11. What does the pd.Series.shape attribute return?
A. An integer
B. A list
C. A one-element tuple
D. A two-element tuple

Correct answer: C.

12. Which attribute of a DataFrame returns a Series of column data types?
A. dtype
B. dtypes
C. types
D. schema

Correct answer: B.

13. What does len(df) return for a DataFrame?
A. Number of columns
B. Total number of elements
C. Number of rows
D. Size of memory used

Correct answer: C.

14. In basic DataFrame selection using df["a"], what is returned?
A. A DataFrame
B. A scalar
C. A NumPy array
D. A Series

Correct answer: D.

15. What does df[["a"]] return?
A. A Series
B. A DataFrame
C. A scalar
D. A NumPy array

Correct answer: B.

16. When using [] with a Series that has a non-default integer index, selection is done by:
A. Position
B. Order of insertion
C. Label
D. Data type

Correct answer: C.

17. Which method should be used for explicit position-based selection in a Series?
A. loc
B. at
C. iloc
D. ix

Correct answer: C.

18. What does ser.iloc[1] return?
A. All rows with label 1
B. The value at position 1
C. A slice of the Series
D. A DataFrame

Correct answer: B.

19. How many indexers are required when using DataFrame.iloc?
A. One
B. Two
C. Three
D. Unlimited

Correct answer: B.

20. What does df.iloc[:, 0] return?
A. First row
B. First column as a Series
C. First column as a DataFrame
D. Entire DataFrame

Correct answer: B.

21. Which method performs label-based selection in a Series?
A. iloc
B. at
C. loc
D. take

Correct answer: C.

22. What is a key difference between slicing with loc and iloc?
A. loc excludes the stop value
B. iloc includes labels
C. loc includes the stop label
D. iloc works only with strings

Correct answer: C.

23. Which operation may raise a KeyError when using loc?
A. Slicing with ordered unique labels
B. Selecting existing labels
C. Slicing with non-unique unordered labels
D. Selecting with lists

Correct answer: C.

24. In a DataFrame, df.loc["Jack", :] selects:
A. All rows named Jack
B. All columns named Jack
C. All columns for the row labeled Jack
D. Only numeric columns

Correct answer: C.
3
Data Analytics
Photo
25. What is the main advantage of using pd.Index.get_indexer when mixing selection styles?
A. Improved readability
B. Lazy evaluation
C. Better performance by avoiding intermediate objects
D. Automatic type conversion

Correct answer: C.

https://t.me/DataAnalyticsX
Please open Telegram to view this post
VIEW IN TELEGRAM
2
1. What is the result of the following code?

import pandas as pd
s = pd.Series([10, 20, 30], index=[1, 2, 3])
print(s[1])


A. 10
B. 20
C. 30
D. KeyError

Correct answer: A.

2. What will this code output?

import pandas as pd
s = pd.Series([10, 20, 30])
print(s.iloc[1])


A. 10
B. 20
C. 30
D. IndexError

Correct answer: B.

3. What does this print?

import pandas as pd
df = pd.DataFrame({"a": [1, 2], "b": [3, 4]})
print(df.shape)


A. (4,)
B. (2, 2)
C. (1, 4)
D. (2,)

Correct answer: B.

4. What is returned by this expression?

df["a"]


A. DataFrame
B. Series
C. list
D. ndarray

Correct answer: B.

5. What does this code output?

import pandas as pd
df = pd.DataFrame({"a": [1, 2], "b": [3, 4]})
print(df[["a"]].shape)


A. (2,)
B. (1, 2)
C. (2, 1)
D. (4, 1)

Correct answer: C.

6. What is the result?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s > 1)


A. [False, True, True]
B. Series of booleans
C. ndarray of booleans
D. True

Correct answer: B.

7. What does this code produce?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s[s > 1])


A. Series [2, 3]
B. Series [False, True, True]
C. [2, 3]
D. IndexError

Correct answer: A.

8. What is the output?

import pandas as pd
df = pd.DataFrame({"a": [1, 2], "b": [3, 4]})
print(df.iloc[0, 1])


A. 1
B. 2
C. 3
D. 4

Correct answer: C.

9. What does this select?

df.loc[:, "a"]


A. First row
B. First column as Series
C. First column as DataFrame
D. Entire DataFrame

Correct answer: B.

10. What will this code output?

import pandas as pd
df = pd.DataFrame({"a": [1, 2, 3]})
print(len(df))


A. 1
B. 2
C. 3
D. Error

Correct answer: C.

11. What is returned?

df.values


A. Series
B. DataFrame
C. NumPy ndarray
D. list

Correct answer: C.

12. What does this code output?

import pandas as pd
df = pd.DataFrame({"a": [1, 2, 3]})
print(df.index)


A. [0, 1, 2]
B. list
C. RangeIndex
D. ndarray

Correct answer: C.

13. What is the result?

df.columns


A. list
B. Series
C. Index
D. dict

Correct answer: C.

14. What does this return?

df.dtypes


A. dict
B. Series
C. DataFrame
D. ndarray

Correct answer: B.

15. What is printed?

import pandas as pd
s = pd.Series([1, None, 3])
print(s.isna().sum())


A. 0
B. 1
C. 2
D. 3

Correct answer: B.

16. What does this code output?

import pandas as pd
s = pd.Series([1, None, 3])
print(s.dropna().values)


A. [1, None, 3]
B. [None]
C. [1, 3]
D. Error

Correct answer: C.

17. What does this expression return?

df.head(1)


A. First column
B. First row as Series
C. First row as DataFrame
D. Entire DataFrame

Correct answer: C.

18. What is the output?

import pandas as pd
df = pd.DataFrame({"a": [1, 2, 3]})
print(df.tail(1)["a"].iloc[0])


A. 1
B. 2
C. 3
D. Error

Correct answer: C.

19. What happens here?

df["c"] = df["a"] * 2


A. Raises KeyError
B. Modifies column a
C. Adds new column c
D. No effect

Correct answer: C.

20. What does this code output?

import pandas as pd
df = pd.DataFrame({"a": [1, 2, 3]})
print(df.sum().iloc[0])


A. 1
B. 3
C. 6
D. Error

Correct answer: C.

21. What does df.mean() return?
A. scalar
B. Series
C. DataFrame
D. ndarray

Correct answer: B.

22. What is the result?

df["a"].dtype


A. int
B. numpy.int64
C. object
D. float

Correct answer: B.

23. What does this code do?

df = df.rename(columns={"a": "x"})


A. Renames index
B. Renames column a to x
C. Deletes column a
D. Copies DataFrame only

Correct answer: B.

24. What does this expression return?

df.loc[df["a"] > 1, :]


A. Boolean Series
B. Filtered DataFrame
C. Filtered Series
D. Error

Correct answer: B.

25. What is printed?

import pandas as pd
df = pd.DataFrame({"a": [1, 2, 3]})
print(df.empty)


A. True
B. False
C. None
D. Error

Correct answer: B.

https://t.me/DataAnalyticsX 😱
Please open Telegram to view this post
VIEW IN TELEGRAM
1
1. What is the output of this code?

import pandas as pd
s = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
print(s.reindex(['c', 'a', 'd']))


A. Series with values [3, 1, NaN]
B. Series with values [3, 1]
C. KeyError
D. Series with values [1, 3, NaN]

Correct answer: A.

2. What does this code produce?

import pandas as pd
df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
print(df.assign(c=lambda x: x['a'] + x['b'])['c'].iloc[1])


A. 3
B. 4
C. 5
D. 6

Correct answer: C.

3. What is the result?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
df.loc[df['a'] > 1, 'a'] = 0
print(df['a'].tolist())


A. [1, 2, 3]
B. [1, 0, 0]
C. [0, 0, 0]
D. [1, 2, 0]

Correct answer: B.

4. What does this output?

import pandas as pd
s = pd.Series([10, 20, 30], index=[2, 0, 1])
print(s.sort_index().iloc[0])


A. 10
B. 20
C. 30
D. IndexError

Correct answer: B.

5. What is returned?

import pandas as pd
df = pd.DataFrame({'a': [1, 1, 2]})
print(df['a'].value_counts().loc[1])


A. 1
B. 2
C. 3
D. KeyError

Correct answer: B.

6. What does this code output?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.map({1: 'a', 2: 'b'}).isna().sum())


A. 0
B. 1
C. 2
D. 3

Correct answer: B.

7. What is the result?

import pandas as pd
df = pd.DataFrame({'a': [1, None, 3]})
print(df['a'].astype('Int64').isna().sum())


A. 0
B. 1
C. 2
D. Raises error

Correct answer: B.

8. What does this produce?

import pandas as pd
df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
print(df.filter(regex='a').shape)


A. (1, 2)
B. (2, 1)
C. (2, 2)
D. (1, 1)

Correct answer: B.

9. What is printed?

import pandas as pd
s = pd.Series(['1', '2', '3'])
print(s.str.cat(sep='-'))


A. 1-2-3
B. ['1-2-3']
C. Series
D. Error

Correct answer: A.

10. What does this code return?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.sample(n=1).shape)


A. (3, 1)
B. (1, 3)
C. (1, 1)
D. Depends on random seed

Correct answer: C.

11. What is the result?

import pandas as pd
s = pd.Series([1, 2, 3, 4])
print(s.rolling(2).sum().iloc[-1])


A. 4
B. 5
C. 6
D. NaN

Correct answer: B.

12. What does this output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.eval('b = a * 2').shape)


A. (3, 1)
B. (3, 2)
C. (1, 3)
D. Error

Correct answer: B.

13. What is returned?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.query('a % 2 == 0')['a'].iloc[0])


A. 1
B. 2
C. 3
D. KeyError

Correct answer: B.

14. What does this code output?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.to_frame().shape)


A. (1, 3)
B. (3, 1)
C. (3, 3)
D. (1, 1)

Correct answer: B.

15. What is the result?

import pandas as pd
df = pd.DataFrame({'a': [1, 2]})
print(df.T.shape)


A. (2, 1)
B. (1, 2)
C. (2, 2)
D. (1, 1)

Correct answer: B.

16. What does this print?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.shift(1)['a'].isna().sum())


A. 0
B. 1
C. 2
D. 3

Correct answer: B.

17. What is the output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.duplicated().any())


A. True
B. False
C. None
D. Error

Correct answer: B.

18. What does this code return?

import pandas as pd
s = pd.Series([3, 1, 2])
print(s.rank().tolist())


A. [3, 1, 2]
B. [1, 2, 3]
C. [3.0, 1.0, 2.0]
D. [3.0, 1.0, 2.0] sorted

Correct answer: C.

19. What is printed?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.memory_usage(deep=True).iloc[1] > 0)


A. True
B. False
C. None
D. Error

Correct answer: A.

20. What does this produce?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.select_dtypes(include='int').shape)


A. (3, 0)
B. (0, 1)
C. (3, 1)
D. (1, 3)

Correct answer: C.
6
1. What is the output of this code?

import pandas as pd
idx = pd.Index(['a', 'b', 'c'])
print(idx.is_unique)


A. False
B. True
C. Raises AttributeError
D. None

Correct answer: B.

2. What does this code return?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.set_index('a').index.name)


A. None
B. 'index'
C. 'a'
D. Raises KeyError

Correct answer: C.

3. What is the result?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.add(1).tolist())


A. [1, 2, 3]
B. [2, 3, 4]
C. [1, 3, 5]
D. Error

Correct answer: B.

4. What does this code output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.nlargest(2, 'a')['a'].tolist())


A. [1, 2]
B. [2, 3]
C. [3, 2]
D. [3, 1]

Correct answer: C.

5. What is printed?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.nsmallest(1, 'a').iloc[0, 0])


A. 1
B. 2
C. 3
D. Error

Correct answer: A.

6. What does this code return?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.diff().isna().sum())


A. 0
B. 1
C. 2
D. 3

Correct answer: B.

7. What is the output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.cumsum()['a'].iloc[-1])


A. 3
B. 5
C. 6
D. Error

Correct answer: C.

8. What does this code produce?

import pandas as pd
df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
print(df.pipe(lambda x: x.shape))


A. (1, 4)
B. (2, 2)
C. (4, 1)
D. Error

Correct answer: B.

9. What is returned?

import pandas as pd
s = pd.Series([10, 20, 30])
print(s.take([2, 0]).tolist())


A. [10, 20]
B. [30, 10]
C. [20, 30]
D. Error

Correct answer: B.

10. What does this output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.any().iloc[0])


A. False
B. True
C. None
D. Error

Correct answer: B.

11. What is the result?

import pandas as pd
df = pd.DataFrame({'a': [0, 0, 1]})
print(df.all().iloc[0])


A. True
B. False
C. None
D. Error

Correct answer: B.

12. What does this code return?

import pandas as pd
s = pd.Series(['a', 'b', 'c'])
print(s.repeat(2).shape)


A. (3,)
B. (6,)
C. (2, 3)
D. Error

Correct answer: B.

13. What is printed?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.melt().shape)


A. (1, 3)
B. (3, 2)
C. (3, 1)
D. (1, 2)

Correct answer: B.

14. What does this code output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.stack().shape)


A. (3,)
B. (3, 1)
C. (1, 3)
D. Error

Correct answer: A.

15. What is the result?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.unstack().isna().sum().sum())


A. 0
B. 1
C. 2
D. Error

Correct answer: A.

16. What does this code return?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.to_numpy().ndim)


A. 0
B. 1
C. 2
D. Error

Correct answer: B.

17. What is printed?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.axes[0].equals(df.index))


A. True
B. False
C. None
D. Error

Correct answer: A.

18. What does this code output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.copy(deep=False) is df)


A. True
B. False
C. None
D. Error

Correct answer: B.

19. What is the result?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.equals(pd.Series([1, 2, 3])))


A. True
B. False
C. None
D. Error

Correct answer: A.

20. What does this code output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.info() is None)


A. True
B. False
C. None
D. Error

Correct answer: A.

https://t.me/DataAnalyticsX
Please open Telegram to view this post
VIEW IN TELEGRAM
8
Please open Telegram to view this post
VIEW IN TELEGRAM
5
This GitHub repository is not a dump of tutorials.

Inside, there are 28 production-ready AI projects that can be used.

What's there:

Machine learning projects
→ Airbnb price forecasting
→ Air ticket cost calculator
→ Student performance tracker

AI for medicine
→ Chest disease detection
→ Heart disease prediction
→ Diabetes risk analysis

Generative AI applications
→ Live chatbot on Gemini
→ Medical assistant tool
→ Document analysis tool

Computer vision projects
→ Hand tracking system
→ Drug recognition app
→ OpenCV implementations

Data analysis dashboards
→ E-commerce analytics
→ Restaurant analytics
→ Cricket statistics tracker

And 10 more advanced projects coming soon:
→ Deepfake detection
→ Brain tumor classification
→ Driver drowsiness alert system

This is not just a collection of code files.
These are end-to-end working applications.

View the repository 😲
https://github.com/KalyanM45/AI-Project-Gallery

👉 @codeprogrammer

Like and Share
Please open Telegram to view this post
VIEW IN TELEGRAM
8
Media is too big
VIEW IN TELEGRAM
OnSpace Mobile App builder: Build AI Apps in minutes

Visit website: https://www.onspace.ai/?via=tg_datas
Or Download app:https://onspace.onelink.me/za8S/h1jb6sb9?c=datas

With OnSpace, you can build website or AI Mobile Apps by chatting with AI, and publish to PlayStore or AppStore.

What will you get:
✔️ Create app or website by chatting with AI;
✔️ Integrate with Any top AI power just by giving order (like Sora2, Nanobanan Pro & Gemini 3 Pro);
✔️ Download APK,AAB file, publish to AppStore.
✔️ Add payments and monetize like in-app-purchase and Stripe.
✔️ Functional login & signup.
✔️ Database + dashboard in minutes.
✔️ Full tutorial on YouTube and within 1 day customer service
Please open Telegram to view this post
VIEW IN TELEGRAM
4
Data Analytics
OnSpace Mobile App builder: Build AI Apps in minutes Visit website: https://www.onspace.ai/?via=tg_datas Or Download app:https://onspace.onelink.me/za8S/h1jb6sb9?c=datas With OnSpace, you can build website or AI Mobile Apps by chatting with AI, and publish…
A great app for building and programming desktop, Android, and Telegram bots using only prompts

Just send what you want and it will design everything for you and the possibility to make money from your app 👍
1
And what if simply changing the library would unlock all the processor cores without rewriting the code?

pandas runs joins on a single core, leaving the others idle when working with large tables.

Polars distributes join operations across all available cores and, as a result, is significantly faster than pandas on large data sets.

Why is Polars so fast:
• Processes rows in batches in parallel
• Uses all CPU cores
• Does not require any configuration

Article - pandas vs polars vs DuckDB
Run this code

👉 https://t.me/DataAnalyticsX
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21
Media is too big
VIEW IN TELEGRAM
🛑 Popular #SQL interview question.

How would you answer it?

https://t.me/DataAnalyticsX
2
This channels is for Programmers, Coders, Software Engineers.

0️⃣ Python
1️⃣ Data Science
2️⃣ Machine Learning
3️⃣ Data Visualization
4️⃣ Artificial Intelligence
5️⃣ Data Analysis
6️⃣ Statistics
7️⃣ Deep Learning
8️⃣ programming Languages

https://t.me/addlist/8_rRW2scgfRhOTc0

https://t.me/Codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
2
👩‍💻 FREE 2026 IT Learning Kits Giveaway

🔥Whether you're preparing for #Cisco #AWS #PMP #Python #Excel #Google #Microsoft #AI or any other in-demand certification – SPOTO has got you covered!

🎁 Explore Our FREE Study Resources
·IT Certs E-book : https://bit.ly/3YvSMHL
·IT exams skill Test : https://bit.ly/4r4VHnd
·Python, ITIL, PMP, Excel, Cyber Security, cloud, SQL Courses : https://bit.ly/4qNWl8r
·Free AI online preparation material and support tools : https://bit.ly/4qKiKTN

🔗 Need IT Certs Exam Help? contact: wa.link/dm4kyz
📲 Join IT Study Group for insider tips & expert support:
https://chat.whatsapp.com/BEQ9WrfLnpg1SgzGQw69oM
3
⚡️ All cheat sheets for programmers in one place.

There's a lot of useful stuff inside: short, clear tips on languages, technologies, and frameworks.

No registration required and it's free.

https://overapi.com/

#python #php #Database #DataAnalysis #MachineLearning #AI #DeepLearning #LLMS

https://t.me/CodeProgrammer ⚡️
Please open Telegram to view this post
VIEW IN TELEGRAM
1