Data Analytics
27.6K subscribers
1.19K photos
25 videos
33 files
1.01K links
Dive into the world of Data Analytics – uncover insights, explore trends, and master data-driven decision making.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
# Select products in 'Electronics' or 'Audio' categories
print("Products in Electronics or Audio:")
print(df_pl.filter(pl.col('category').is_in(['Electronics', 'Audio'])))

# Select products with price between 50 and 200 (inclusive)
print("\nProducts with price between 50 and 200:")
print(df_pl.filter(pl.col('price').is_between(50, 200)))


#### SQL

-- Select products in 'Electronics' or 'Audio' categories
SELECT *
FROM products
WHERE category IN ('Electronics', 'Audio');

-- Select products with price between 50 and 200 (inclusive)
SELECT *
FROM products
WHERE price BETWEEN 50 AND 200;

https://t.me/DataAnalyticsX πŸ‘Ύ
Please open Telegram to view this post
VIEW IN TELEGRAM
❀5
This media is not supported in your browser
VIEW IN TELEGRAM
The Python library PandasAI has been released for simplified data analysis using AI.

You can ask questions about the dataset in plain language directly in the AI dialogue, compare different datasets, and create graphs. It saves a lot of time, especially in the initial stage of getting acquainted with the data. It supports CSV, SQL, and Parquet.

And here's the link 😍

πŸ‘‰ https://t.me/DataAnalyticsX
Please open Telegram to view this post
VIEW IN TELEGRAM
❀5
This channels is for Programmers, Coders, Software Engineers.

0️⃣ Python
1️⃣ Data Science
2️⃣ Machine Learning
3️⃣ Data Visualization
4️⃣ Artificial Intelligence
5️⃣ Data Analysis
6️⃣ Statistics
7️⃣ Deep Learning
8️⃣ programming Languages

βœ… https://t.me/addlist/8_rRW2scgfRhOTc0

βœ… https://t.me/Codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
❀1
Data Analytics
Photo
1. What is the primary purpose of the pandas library?
A. Working with unstructured multimedia data
B. Creating and manipulating structured tabular data
C. Building machine learning models
D. Visualizing neural networks

Correct answer: B.

2. Which pandas object is one-dimensional and enforces a homogeneous data type?
A. DataFrame
B. Index
C. Series
D. Panel

Correct answer: C.

3. How can a pd.Series be best compared to an Excel structure?
A. Entire worksheet
B. Row
C. Column
D. Pivot table

Correct answer: C.

4. Which object in pandas represents labels for rows or columns?
A. Series
B. DataFrame
C. Index
D. ndarray

Correct answer: C.

5. What happens if no index is provided when creating a pd.Series?
A. An error is raised
B. A random index is created
C. A RangeIndex starting at 0 is created
D. Index values must be inferred manually

Correct answer: C.

6. Which argument is used to explicitly set the data type of a pd.Series?
A. type=
B. data_type=
C. dtype=
D. astype=

Correct answer: C.

7. What is the default value of the name attribute of a pd.Series if not provided?
A. Empty string
B. Undefined
C. None
D. "Series"

Correct answer: C.

8. Which structure allows heterogeneous column data types?
A. Series
B. Index
C. ndarray
D. DataFrame

Correct answer: D.

9. When constructing a DataFrame from a dictionary, what do the dictionary keys represent?
A. Row labels
B. Index levels
C. Column labels
D. Data types

Correct answer: C.

10. Which attribute returns the number of rows in a pd.Series?
A. size
B. shape
C. len()
D. index

Correct answer: B.

11. What does the pd.Series.shape attribute return?
A. An integer
B. A list
C. A one-element tuple
D. A two-element tuple

Correct answer: C.

12. Which attribute of a DataFrame returns a Series of column data types?
A. dtype
B. dtypes
C. types
D. schema

Correct answer: B.

13. What does len(df) return for a DataFrame?
A. Number of columns
B. Total number of elements
C. Number of rows
D. Size of memory used

Correct answer: C.

14. In basic DataFrame selection using df["a"], what is returned?
A. A DataFrame
B. A scalar
C. A NumPy array
D. A Series

Correct answer: D.

15. What does df[["a"]] return?
A. A Series
B. A DataFrame
C. A scalar
D. A NumPy array

Correct answer: B.

16. When using [] with a Series that has a non-default integer index, selection is done by:
A. Position
B. Order of insertion
C. Label
D. Data type

Correct answer: C.

17. Which method should be used for explicit position-based selection in a Series?
A. loc
B. at
C. iloc
D. ix

Correct answer: C.

18. What does ser.iloc[1] return?
A. All rows with label 1
B. The value at position 1
C. A slice of the Series
D. A DataFrame

Correct answer: B.

19. How many indexers are required when using DataFrame.iloc?
A. One
B. Two
C. Three
D. Unlimited

Correct answer: B.

20. What does df.iloc[:, 0] return?
A. First row
B. First column as a Series
C. First column as a DataFrame
D. Entire DataFrame

Correct answer: B.

21. Which method performs label-based selection in a Series?
A. iloc
B. at
C. loc
D. take

Correct answer: C.

22. What is a key difference between slicing with loc and iloc?
A. loc excludes the stop value
B. iloc includes labels
C. loc includes the stop label
D. iloc works only with strings

Correct answer: C.

23. Which operation may raise a KeyError when using loc?
A. Slicing with ordered unique labels
B. Selecting existing labels
C. Slicing with non-unique unordered labels
D. Selecting with lists

Correct answer: C.

24. In a DataFrame, df.loc["Jack", :] selects:
A. All rows named Jack
B. All columns named Jack
C. All columns for the row labeled Jack
D. Only numeric columns

Correct answer: C.
❀3
Data Analytics
Photo
25. What is the main advantage of using pd.Index.get_indexer when mixing selection styles?
A. Improved readability
B. Lazy evaluation
C. Better performance by avoiding intermediate objects
D. Automatic type conversion

Correct answer: C.

https://t.me/DataAnalyticsX βœ…
Please open Telegram to view this post
VIEW IN TELEGRAM
❀2
1. What is the result of the following code?

import pandas as pd
s = pd.Series([10, 20, 30], index=[1, 2, 3])
print(s[1])


A. 10
B. 20
C. 30
D. KeyError

Correct answer: A.

2. What will this code output?

import pandas as pd
s = pd.Series([10, 20, 30])
print(s.iloc[1])


A. 10
B. 20
C. 30
D. IndexError

Correct answer: B.

3. What does this print?

import pandas as pd
df = pd.DataFrame({"a": [1, 2], "b": [3, 4]})
print(df.shape)


A. (4,)
B. (2, 2)
C. (1, 4)
D. (2,)

Correct answer: B.

4. What is returned by this expression?

df["a"]


A. DataFrame
B. Series
C. list
D. ndarray

Correct answer: B.

5. What does this code output?

import pandas as pd
df = pd.DataFrame({"a": [1, 2], "b": [3, 4]})
print(df[["a"]].shape)


A. (2,)
B. (1, 2)
C. (2, 1)
D. (4, 1)

Correct answer: C.

6. What is the result?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s > 1)


A. [False, True, True]
B. Series of booleans
C. ndarray of booleans
D. True

Correct answer: B.

7. What does this code produce?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s[s > 1])


A. Series [2, 3]
B. Series [False, True, True]
C. [2, 3]
D. IndexError

Correct answer: A.

8. What is the output?

import pandas as pd
df = pd.DataFrame({"a": [1, 2], "b": [3, 4]})
print(df.iloc[0, 1])


A. 1
B. 2
C. 3
D. 4

Correct answer: C.

9. What does this select?

df.loc[:, "a"]


A. First row
B. First column as Series
C. First column as DataFrame
D. Entire DataFrame

Correct answer: B.

10. What will this code output?

import pandas as pd
df = pd.DataFrame({"a": [1, 2, 3]})
print(len(df))


A. 1
B. 2
C. 3
D. Error

Correct answer: C.

11. What is returned?

df.values


A. Series
B. DataFrame
C. NumPy ndarray
D. list

Correct answer: C.

12. What does this code output?

import pandas as pd
df = pd.DataFrame({"a": [1, 2, 3]})
print(df.index)


A. [0, 1, 2]
B. list
C. RangeIndex
D. ndarray

Correct answer: C.

13. What is the result?

df.columns


A. list
B. Series
C. Index
D. dict

Correct answer: C.

14. What does this return?

df.dtypes


A. dict
B. Series
C. DataFrame
D. ndarray

Correct answer: B.

15. What is printed?

import pandas as pd
s = pd.Series([1, None, 3])
print(s.isna().sum())


A. 0
B. 1
C. 2
D. 3

Correct answer: B.

16. What does this code output?

import pandas as pd
s = pd.Series([1, None, 3])
print(s.dropna().values)


A. [1, None, 3]
B. [None]
C. [1, 3]
D. Error

Correct answer: C.

17. What does this expression return?

df.head(1)


A. First column
B. First row as Series
C. First row as DataFrame
D. Entire DataFrame

Correct answer: C.

18. What is the output?

import pandas as pd
df = pd.DataFrame({"a": [1, 2, 3]})
print(df.tail(1)["a"].iloc[0])


A. 1
B. 2
C. 3
D. Error

Correct answer: C.

19. What happens here?

df["c"] = df["a"] * 2


A. Raises KeyError
B. Modifies column a
C. Adds new column c
D. No effect

Correct answer: C.

20. What does this code output?

import pandas as pd
df = pd.DataFrame({"a": [1, 2, 3]})
print(df.sum().iloc[0])


A. 1
B. 3
C. 6
D. Error

Correct answer: C.

21. What does df.mean() return?
A. scalar
B. Series
C. DataFrame
D. ndarray

Correct answer: B.

22. What is the result?

df["a"].dtype


A. int
B. numpy.int64
C. object
D. float

Correct answer: B.

23. What does this code do?

df = df.rename(columns={"a": "x"})


A. Renames index
B. Renames column a to x
C. Deletes column a
D. Copies DataFrame only

Correct answer: B.

24. What does this expression return?

df.loc[df["a"] > 1, :]


A. Boolean Series
B. Filtered DataFrame
C. Filtered Series
D. Error

Correct answer: B.

25. What is printed?

import pandas as pd
df = pd.DataFrame({"a": [1, 2, 3]})
print(df.empty)


A. True
B. False
C. None
D. Error

Correct answer: B.

https://t.me/DataAnalyticsX 😱
Please open Telegram to view this post
VIEW IN TELEGRAM
❀1
1. What is the output of this code?

import pandas as pd
s = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
print(s.reindex(['c', 'a', 'd']))


A. Series with values [3, 1, NaN]
B. Series with values [3, 1]
C. KeyError
D. Series with values [1, 3, NaN]

Correct answer: A.

2. What does this code produce?

import pandas as pd
df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
print(df.assign(c=lambda x: x['a'] + x['b'])['c'].iloc[1])


A. 3
B. 4
C. 5
D. 6

Correct answer: C.

3. What is the result?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
df.loc[df['a'] > 1, 'a'] = 0
print(df['a'].tolist())


A. [1, 2, 3]
B. [1, 0, 0]
C. [0, 0, 0]
D. [1, 2, 0]

Correct answer: B.

4. What does this output?

import pandas as pd
s = pd.Series([10, 20, 30], index=[2, 0, 1])
print(s.sort_index().iloc[0])


A. 10
B. 20
C. 30
D. IndexError

Correct answer: B.

5. What is returned?

import pandas as pd
df = pd.DataFrame({'a': [1, 1, 2]})
print(df['a'].value_counts().loc[1])


A. 1
B. 2
C. 3
D. KeyError

Correct answer: B.

6. What does this code output?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.map({1: 'a', 2: 'b'}).isna().sum())


A. 0
B. 1
C. 2
D. 3

Correct answer: B.

7. What is the result?

import pandas as pd
df = pd.DataFrame({'a': [1, None, 3]})
print(df['a'].astype('Int64').isna().sum())


A. 0
B. 1
C. 2
D. Raises error

Correct answer: B.

8. What does this produce?

import pandas as pd
df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
print(df.filter(regex='a').shape)


A. (1, 2)
B. (2, 1)
C. (2, 2)
D. (1, 1)

Correct answer: B.

9. What is printed?

import pandas as pd
s = pd.Series(['1', '2', '3'])
print(s.str.cat(sep='-'))


A. 1-2-3
B. ['1-2-3']
C. Series
D. Error

Correct answer: A.

10. What does this code return?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.sample(n=1).shape)


A. (3, 1)
B. (1, 3)
C. (1, 1)
D. Depends on random seed

Correct answer: C.

11. What is the result?

import pandas as pd
s = pd.Series([1, 2, 3, 4])
print(s.rolling(2).sum().iloc[-1])


A. 4
B. 5
C. 6
D. NaN

Correct answer: B.

12. What does this output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.eval('b = a * 2').shape)


A. (3, 1)
B. (3, 2)
C. (1, 3)
D. Error

Correct answer: B.

13. What is returned?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.query('a % 2 == 0')['a'].iloc[0])


A. 1
B. 2
C. 3
D. KeyError

Correct answer: B.

14. What does this code output?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.to_frame().shape)


A. (1, 3)
B. (3, 1)
C. (3, 3)
D. (1, 1)

Correct answer: B.

15. What is the result?

import pandas as pd
df = pd.DataFrame({'a': [1, 2]})
print(df.T.shape)


A. (2, 1)
B. (1, 2)
C. (2, 2)
D. (1, 1)

Correct answer: B.

16. What does this print?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.shift(1)['a'].isna().sum())


A. 0
B. 1
C. 2
D. 3

Correct answer: B.

17. What is the output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.duplicated().any())


A. True
B. False
C. None
D. Error

Correct answer: B.

18. What does this code return?

import pandas as pd
s = pd.Series([3, 1, 2])
print(s.rank().tolist())


A. [3, 1, 2]
B. [1, 2, 3]
C. [3.0, 1.0, 2.0]
D. [3.0, 1.0, 2.0] sorted

Correct answer: C.

19. What is printed?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.memory_usage(deep=True).iloc[1] > 0)


A. True
B. False
C. None
D. Error

Correct answer: A.

20. What does this produce?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.select_dtypes(include='int').shape)


A. (3, 0)
B. (0, 1)
C. (3, 1)
D. (1, 3)

Correct answer: C.
❀6
This channels is for Programmers, Coders, Software Engineers.

0️⃣ Python
1️⃣ Data Science
2️⃣ Machine Learning
3️⃣ Data Visualization
4️⃣ Artificial Intelligence
5️⃣ Data Analysis
6️⃣ Statistics
7️⃣ Deep Learning
8️⃣ programming Languages

βœ… https://t.me/addlist/8_rRW2scgfRhOTc0

βœ… https://t.me/Codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
❀1
1. What is the output of this code?

import pandas as pd
idx = pd.Index(['a', 'b', 'c'])
print(idx.is_unique)


A. False
B. True
C. Raises AttributeError
D. None

Correct answer: B.

2. What does this code return?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.set_index('a').index.name)


A. None
B. 'index'
C. 'a'
D. Raises KeyError

Correct answer: C.

3. What is the result?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.add(1).tolist())


A. [1, 2, 3]
B. [2, 3, 4]
C. [1, 3, 5]
D. Error

Correct answer: B.

4. What does this code output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.nlargest(2, 'a')['a'].tolist())


A. [1, 2]
B. [2, 3]
C. [3, 2]
D. [3, 1]

Correct answer: C.

5. What is printed?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.nsmallest(1, 'a').iloc[0, 0])


A. 1
B. 2
C. 3
D. Error

Correct answer: A.

6. What does this code return?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.diff().isna().sum())


A. 0
B. 1
C. 2
D. 3

Correct answer: B.

7. What is the output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.cumsum()['a'].iloc[-1])


A. 3
B. 5
C. 6
D. Error

Correct answer: C.

8. What does this code produce?

import pandas as pd
df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
print(df.pipe(lambda x: x.shape))


A. (1, 4)
B. (2, 2)
C. (4, 1)
D. Error

Correct answer: B.

9. What is returned?

import pandas as pd
s = pd.Series([10, 20, 30])
print(s.take([2, 0]).tolist())


A. [10, 20]
B. [30, 10]
C. [20, 30]
D. Error

Correct answer: B.

10. What does this output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.any().iloc[0])


A. False
B. True
C. None
D. Error

Correct answer: B.

11. What is the result?

import pandas as pd
df = pd.DataFrame({'a': [0, 0, 1]})
print(df.all().iloc[0])


A. True
B. False
C. None
D. Error

Correct answer: B.

12. What does this code return?

import pandas as pd
s = pd.Series(['a', 'b', 'c'])
print(s.repeat(2).shape)


A. (3,)
B. (6,)
C. (2, 3)
D. Error

Correct answer: B.

13. What is printed?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.melt().shape)


A. (1, 3)
B. (3, 2)
C. (3, 1)
D. (1, 2)

Correct answer: B.

14. What does this code output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.stack().shape)


A. (3,)
B. (3, 1)
C. (1, 3)
D. Error

Correct answer: A.

15. What is the result?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.unstack().isna().sum().sum())


A. 0
B. 1
C. 2
D. Error

Correct answer: A.

16. What does this code return?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.to_numpy().ndim)


A. 0
B. 1
C. 2
D. Error

Correct answer: B.

17. What is printed?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.axes[0].equals(df.index))


A. True
B. False
C. None
D. Error

Correct answer: A.

18. What does this code output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.copy(deep=False) is df)


A. True
B. False
C. None
D. Error

Correct answer: B.

19. What is the result?

import pandas as pd
s = pd.Series([1, 2, 3])
print(s.equals(pd.Series([1, 2, 3])))


A. True
B. False
C. None
D. Error

Correct answer: A.

20. What does this code output?

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
print(df.info() is None)


A. True
B. False
C. None
D. Error

Correct answer: A.

https://t.me/DataAnalyticsX βœ…
Please open Telegram to view this post
VIEW IN TELEGRAM
❀7
Please open Telegram to view this post
VIEW IN TELEGRAM
❀3
πŸš€ Master Data Science & Programming!

Unlock your potential with this curated list of Telegram channels. Whether you need books, datasets, interview prep, or project ideas, we have the perfect resource for you. Join the community today!


πŸ”° Machine Learning with Python
Learn Machine Learning with hands-on Python tutorials, real-world code examples, and clear explanations for researchers and developers.
https://t.me/CodeProgrammer

πŸ”– Machine Learning
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.
https://t.me/DataScienceM

🧠 Code With Python
This channel delivers clear, practical content for developers, covering Python, Django, Data Structures, Algorithms, and DSA – perfect for learning, coding, and mastering key programming skills.
https://t.me/DataScience4

🎯 PyData Careers | Quiz
Python Data Science jobs, interview tips, and career insights for aspiring professionals.
https://t.me/DataScienceQ

πŸ’Ύ Kaggle Data Hub
Your go-to hub for Kaggle datasets – explore, analyze, and leverage data for Machine Learning and Data Science projects.
https://t.me/datasets1

πŸ§‘β€πŸŽ“ Udemy Coupons | Courses
The first channel in Telegram that offers free Udemy coupons
https://t.me/DataScienceC

πŸ˜€ ML Research Hub
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.
https://t.me/DataScienceT

πŸ’¬ Data Science Chat
An active community group for discussing data challenges and networking with peers.
https://t.me/DataScience9

🐍 Python Arab| Ψ¨Ψ§ΩŠΨ«ΩˆΩ† عربي
The largest Arabic-speaking group for Python developers to share knowledge and help.
https://t.me/PythonArab

πŸ–Š Data Science Jupyter Notebooks
Explore the world of Data Science through Jupyter Notebooksβ€”insights, tutorials, and tools to boost your data journey. Code, analyze, and visualize smarter with every post.
https://t.me/DataScienceN

πŸ“Ί Free Online Courses | Videos
Free online courses covering data science, machine learning, analytics, programming, and essential skills for learners.
https://t.me/DataScienceV

πŸ“ˆ Data Analytics
Dive into the world of Data Analytics – uncover insights, explore trends, and master data-driven decision making.
https://t.me/DataAnalyticsX

🎧 Learn Python Hub
Master Python with step-by-step courses – from basics to advanced projects and practical applications.
https://t.me/Python53

⭐️ Research Papers
Professional Academic Writing & Simulation Services
https://t.me/DataScienceY

━━━━━━━━━━━━━━━━━━
Admin: @HusseinSheikho
Please open Telegram to view this post
VIEW IN TELEGRAM
❀1
This GitHub repository is not a dump of tutorials.

Inside, there are 28 production-ready AI projects that can be used.

What's there:

Machine learning projects
β†’ Airbnb price forecasting
β†’ Air ticket cost calculator
β†’ Student performance tracker

AI for medicine
β†’ Chest disease detection
β†’ Heart disease prediction
β†’ Diabetes risk analysis

Generative AI applications
β†’ Live chatbot on Gemini
β†’ Medical assistant tool
β†’ Document analysis tool

Computer vision projects
β†’ Hand tracking system
β†’ Drug recognition app
β†’ OpenCV implementations

Data analysis dashboards
β†’ E-commerce analytics
β†’ Restaurant analytics
β†’ Cricket statistics tracker

And 10 more advanced projects coming soon:
β†’ Deepfake detection
β†’ Brain tumor classification
β†’ Driver drowsiness alert system

This is not just a collection of code files.
These are end-to-end working applications.

View the repository 😲
https://github.com/KalyanM45/AI-Project-Gallery

πŸ‘‰ @codeprogrammer

Like and Share
Please open Telegram to view this post
VIEW IN TELEGRAM
❀2
200$ to 20k$ SOL Challenge!

As promised, i will do another challenge for those who missed the previous one!

Last one we completed in 6 days, let’s do this one even quicker!

Join my free group Before closing πŸ‘‡
https://t.me/+DAKLP7eUy9Y3ZjY0

#ad InsideAds