Artificial Intelligence | AI Tools | Coding Books
40.5K subscribers
666 photos
5 videos
319 files
561 links
๐Ÿ”“Unlock Your Coding Potential with ChatGPT
๐Ÿš€ Your Ultimate Guide to Ace Coding Interviews!
๐Ÿ’ป Coding tips, practice questions, and expert advice to land your dream tech job.


For Promotions: @love_data
Download Telegram
โค3
Full stack Project Ideas ๐Ÿ’ก
โค4
๐Ÿ”ฐ MongoDB Roadmap for Beginners 2025
โ”œโ”€โ”€ ๐Ÿง  What is NoSQL? Why MongoDB?
โ”œโ”€โ”€ โš™๏ธ Installing MongoDB & MongoDB Atlas Setup
โ”œโ”€โ”€ ๐Ÿ“ฆ Databases, Collections, Documents
โ”œโ”€โ”€ ๐Ÿ” CRUD Operations (insertOne, find, update, delete)
โ”œโ”€โ”€ ๐Ÿ” Query Operators ($gt, $in, $regex, etc.)
โ”œโ”€โ”€ ๐Ÿงช Mini Project: Student Record Manager
โ”œโ”€โ”€ ๐Ÿงฉ Schema Design & Data Modeling
โ”œโ”€โ”€ ๐Ÿ“‚ Embedding vs Referencing
โ”œโ”€โ”€ ๐Ÿ” Indexes & Performance Optimization
โ”œโ”€โ”€ ๐Ÿ›ก Data Validation & Aggregation Pipeline
โ”œโ”€โ”€ ๐Ÿงช Mini Project: Analytics Dashboard (Aggregation + Filters)
โ”œโ”€โ”€ ๐ŸŒ Connecting MongoDB with Node.js (Mongoose ORM)
โ”œโ”€โ”€ ๐Ÿงฑ Relationships in NoSQL (1-1, 1-Many, Many-Many)
โ”œโ”€โ”€ โœ… Backup, Restore, and Security Best Practices

#mongodb
โค3
๐Ÿš€๐Ÿ”ฅ ๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ๐—ป ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—•๐˜‚๐—ถ๐—น๐—ฑ๐—ฒ๐—ฟ โ€” ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ
Master the most in-demand AI skill in todayโ€™s job market: building autonomous AI systems.

In Ready Tensorโ€™s free, project-first program, youโ€™ll create three portfolio-ready projects using ๐—Ÿ๐—ฎ๐—ป๐—ด๐—–๐—ต๐—ฎ๐—ถ๐—ป, ๐—Ÿ๐—ฎ๐—ป๐—ด๐—š๐—ฟ๐—ฎ๐—ฝ๐—ต, and vector databases โ€” and deploy production-ready agents that employers will notice.

Includes guided lectures, videos, and code.
๐—™๐—ฟ๐—ฒ๐—ฒ. ๐—ฆ๐—ฒ๐—น๐—ณ-๐—ฝ๐—ฎ๐—ฐ๐—ฒ๐—ฑ. ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ-๐—ฐ๐—ต๐—ฎ๐—ป๐—ด๐—ถ๐—ป๐—ด.

๐Ÿ‘‰ Apply now: https://go.readytensor.ai/cert-553-agentic-ai-certification
โค2
Artificial Intelligence | AI Tools | Coding Books pinned ยซ๐Ÿš€๐Ÿ”ฅ ๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ๐—ป ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—•๐˜‚๐—ถ๐—น๐—ฑ๐—ฒ๐—ฟ โ€” ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ Master the most in-demand AI skill in todayโ€™s job market: building autonomous AI systems. In Ready Tensorโ€™s free, project-first program, youโ€™ll create three portfolio-ready projects using ๐—Ÿ๐—ฎ๐—ป๐—ด๐—–๐—ต๐—ฎ๐—ถ๐—ปโ€ฆยป
For those who feel like they're not learning much and feeling demotivated. You should definitely read these lines from one of the book by Andrew Ng ๐Ÿ‘‡

No one can cram everything they need to know over a weekend or even a month. Everyone I
know whoโ€™s great at machine learning is a lifelong learner. Given how quickly our field is changing,
thereโ€™s little choice but to keep learning if you want to keep up.
How can you maintain a steady pace of learning for years? If you can cultivate the habit of
learning a little bit every week, you can make significant progress with what feels like less effort.


Everyday it gets easier but you need to do it everyday โค๏ธ
โค3๐Ÿ‘1
TYPES OF DOMAIN NAME
โค2๐Ÿ‘1
To join Microsoft as a Data Engineer or Software Development Engineer (SDE), here are the key skills you should focus on preparing:

1. Programming Languages
- Python: Essential for data manipulation and ETL tasks.
- SQL: Strong command over writing queries for data retrieval, manipulation, and performance tuning.
- Java/Scala: Important for working with big data frameworks and building scalable systems.


2. Big Data Technologies
- Apache Hadoop: Understanding of distributed data storage and processing.
- Apache Spark: Experience with batch and real-time data processing.
- Kafka: Knowledge of data streaming technologies.


3. Cloud Platforms
- Microsoft Azure: Especially services like Azure Data Factory, Azure Databricks, Azure Synapse, and Azure Blob Storage.
- AWS or Google Cloud: Familiarity with cloud infrastructure is valuable, but Azure expertise will be a plus.


4. ETL Tools and Data Pipelines
- Understanding how to build and manage ETL (Extract, Transform, Load) pipelines.
- Knowledge of tools like Airflow, Talend, Azure Data Factory, or similar platforms.


5. Databases and Data Warehousing
- Relational Databases: MySQL, PostgreSQL, SQL Server.
- NoSQL Databases: MongoDB, Cassandra, DynamoDB.
- Data Warehousing: Familiarity with tools like Snowflake, Redshift, or Azure Synapse.


6. Version Control and CI/CD
- Git: Proficient in version control systems.
- Continuous Integration/Continuous Deployment (CI/CD): Familiarity with Jenkins, GitHub Actions, or Azure DevOps.


7. Data Modeling and Architecture
- Experience in designing scalable data models and database architectures.
- Understanding Data Lakes and Data Warehouses concepts.


8. System Design & Algorithms
- Knowledge of data structures and algorithms for solving system design problems.
- Ability to design large-scale distributed systems, an important part of the interview process.


9. Analytics Tools
- Power BI or Tableau: Useful for data visualization.
- Pandas, NumPy for data manipulation in Python.


10. Problem-Solving and Coding
Focus on practicing on platforms like LeetCode, HackerRank, or Codeforces to improve problem-solving skills, which are critical for technical interviews.


11. Soft Skills
- Collaboration and Communication: Working in teams and effectively communicating technical concepts.
- Adaptability: Ability to work in a fast-paced and evolving technical environment.


By preparing in these areas, you'll be in a strong position to apply for roles at Microsoft, especially in data engineering or SDE roles. Keep Learning!!
โค4
Essential Data Science Concepts ๐Ÿ‘‡

1. Data cleaning: The process of identifying and correcting errors or inconsistencies in data to improve its quality and accuracy.

2. Data exploration: The initial analysis of data to understand its structure, patterns, and relationships.

3. Descriptive statistics: Methods for summarizing and describing the main features of a dataset, such as mean, median, mode, variance, and standard deviation.

4. Inferential statistics: Techniques for making predictions or inferences about a population based on a sample of data.

5. Hypothesis testing: A method for determining whether a hypothesis about a population is true or false based on sample data.

6. Machine learning: A subset of artificial intelligence that focuses on developing algorithms and models that can learn from and make predictions or decisions based on data.

7. Supervised learning: A type of machine learning where the model is trained on labeled data to make predictions on new, unseen data.

8. Unsupervised learning: A type of machine learning where the model is trained on unlabeled data to find patterns or relationships within the data.

9. Feature engineering: The process of creating new features or transforming existing features in a dataset to improve the performance of machine learning models.

10. Model evaluation: The process of assessing the performance of a machine learning model using metrics such as accuracy, precision, recall, and F1 score.
โค3
Complete 3-months roadmap to learn Artificial Intelligence (AI) ๐Ÿ‘‡๐Ÿ‘‡

### Month 1: Fundamentals of AI and Python

Week 1: Introduction to AI
- Key Concepts: What is AI? Categories (Narrow AI, General AI, Super AI), Applications of AI.
- Reading: Research papers and articles on AI.
- Task: Watch introductory AI videos (e.g., Andrew Ng's "What is AI?" on Coursera).

Week 2: Python for AI
- Skills: Basics of Python programming (variables, loops, conditionals, functions, OOP).
- Resources: Python tutorials (W3Schools, Real Python).
- Task: Write simple Python scripts.

Week 3: Libraries for AI
- Key Libraries: NumPy, Pandas, Matplotlib, Scikit-learn.
- Task: Install libraries and practice data manipulation and visualization.
- Resources: Documentation and tutorials on these libraries.

Week 4: Linear Algebra and Probability
- Key Topics: Matrices, Vectors, Eigenvalues, Probability theory.
- Resources: Khan Academy (Linear Algebra), MIT OCW.
- Task: Solve basic linear algebra problems and write Python functions to implement them.

---

### Month 2: Core AI Techniques & Machine Learning

Week 5: Machine Learning Basics
- Key Concepts: Supervised, Unsupervised learning, Model evaluation metrics.
- Algorithms: Linear Regression, Logistic Regression.
- Task: Build basic models using Scikit-learn.
- Resources: Courseraโ€™s Machine Learning by Andrew Ng, Kaggle datasets.

Week 6: Decision Trees, Random Forests, and KNN
- Key Concepts: Decision Trees, Random Forests, K-Nearest Neighbors (KNN).
- Task: Implement these algorithms and analyze their performance.
- Resources: Hands-on Machine Learning with Scikit-learn.

Week 7: Neural Networks & Deep Learning
- Key Concepts: Artificial Neurons, Forward and Backpropagation, Activation Functions.
- Framework: TensorFlow, Keras.
- Task: Build a simple neural network for a classification problem.
- Resources: Fast.ai, Coursera Deep Learning Specialization by Andrew Ng.

Week 8: Convolutional Neural Networks (CNN)
- Key Concepts: Image classification, Convolution, Pooling.
- Task: Build a CNN using Keras/TensorFlow to classify images (e.g., CIFAR-10 dataset).
- Resources: CS231n Stanford Course, Fast.ai Computer Vision.

---

### Month 3: Advanced AI Techniques & Projects

Week 9: Natural Language Processing (NLP)
- Key Concepts: Tokenization, Embeddings, Sentiment Analysis.
- Task: Implement text classification using NLTK/Spacy or transformers.
- Resources: Hugging Face, Coursera NLP courses.

Week 10: Reinforcement Learning
- Key Concepts: Q-learning, Markov Decision Processes (MDP), Policy Gradients.
- Task: Solve a simple RL problem (e.g., OpenAI Gym).
- Resources: Sutton and Bartoโ€™s book on Reinforcement Learning, OpenAI Gym.

Week 11: AI Model Deployment
- Key Concepts: Model deployment using Flask/Streamlit, Model Serving.
- Task: Deploy a trained model using Flask API or Streamlit.
- Resources: Heroku deployment guides, Streamlit documentation.

Week 12: AI Capstone Project
- Task: Create a full-fledged AI project (e.g., Image recognition app, Sentiment analysis, or Chatbot).
- Presentation: Prepare and document your project.
- Goal: Deploy your AI model and share it on GitHub/Portfolio.

### Tools and Platforms:
- Python IDE: Jupyter, PyCharm, or VSCode.
- Datasets: Kaggle, UCI Machine Learning Repository.
- Version Control: GitHub or GitLab for managing code.

Free Books and Courses to Learn Artificial Intelligence๐Ÿ‘‡๐Ÿ‘‡

Introduction to AI for Business Free Course

Top Platforms for Building Data Science Portfolio


Artificial Intelligence: Foundations of Computational Agents Free Book

Learn Basics about AI Free Udemy Course

Amazing AI Reverse Image Search

By following this roadmap, youโ€™ll gain a strong understanding of AI concepts and practical skills in Python, machine learning, and neural networks.

Join @free4unow_backup for more free courses

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค1