Harvard has made its textbook on ML systems publicly available. It's extremely practical: not just about how to train models, but how to build production systems around them - what really matters.
The topics there are really top-notch:
> Building autograd, optimizers, attention, and mini-PyTorch from scratch to understand how the framework is structured internally. (This is really awesome)
> Basic things about DL: batches, computational accuracy, model architectures, and training
> Optimizing ML performance, hardware acceleration, benchmarking, and efficiency
So this isn't just an introductory course on ML, but a complete cycle from start to practical application. You can already read the book and view the code for free. For 2025, this is one of the strongest textbooks to have been released, so it's best not to miss out.
The repository is here, with a link to the book inside๐
๐ @codeprogrammer
The topics there are really top-notch:
> Building autograd, optimizers, attention, and mini-PyTorch from scratch to understand how the framework is structured internally. (This is really awesome)
> Basic things about DL: batches, computational accuracy, model architectures, and training
> Optimizing ML performance, hardware acceleration, benchmarking, and efficiency
So this isn't just an introductory course on ML, but a complete cycle from start to practical application. You can already read the book and view the code for free. For 2025, this is one of the strongest textbooks to have been released, so it's best not to miss out.
The repository is here, with a link to the book inside
Please open Telegram to view this post
VIEW IN TELEGRAM
โค11๐2
How to test code without a real database
It is much better to mock the call to
Example function:
Test with mock:
This way you test only the business logic โ quickly, reliably, and without unnecessary dependencies
https://t.me/CodeProgrammer
During unit testing, connecting to a real DB is unnecessary:
โข tests run slowly
โข become unstable
โข require a working server
It is much better to mock the call to
pandas.read_sql and return dummy dataExample function:
def query_user_data(user_id):
query = f"SELECT id, name FROM users WHERE id = {user_id}"
return pd.read_sql(query, "postgresql://localhost/mydb")
Test with mock:
from unittest.mock import patch
import pandas as pd
@patch("pandas.read_sql")
def test_database_query_mocked(mock_read_sql):
mock_read_sql.return_value = pd.DataFrame(
{"id": [123], "name": ["Alice"]}
)
result = query_user_data(user_id=123)
assert result["name"].iloc[0] == "Alice"
This way you test only the business logic โ quickly, reliably, and without unnecessary dependencies
https://t.me/CodeProgrammer
โค12๐2๐ฅ2
All assignments for the #Stanford The Modern Software Developer course are now available online.
This is the first full-fledged university course that covers how code-generative #LLMs are changing every stage of the development lifecycle. The assignments are designed to take you from a beginner to a confident expert in using AI to boost productivity in development.
Enjoy your studies! โ๏ธ
https://github.com/mihail911/modern-software-dev-assignments
https://t.me/CodeProgrammer
This is the first full-fledged university course that covers how code-generative #LLMs are changing every stage of the development lifecycle. The assignments are designed to take you from a beginner to a confident expert in using AI to boost productivity in development.
Enjoy your studies! โ๏ธ
https://github.com/mihail911/modern-software-dev-assignments
https://t.me/CodeProgrammer
โค5๐4
Awesome open-source project to learn more about Generative Adversarial Networks.
We found this interactive website that shows you visually how #GANs work.
GAN Lab Website: https://lnkd.in/eYV8QvrJ
https://t.me/CodeProgrammer๐ฉท
We found this interactive website that shows you visually how #GANs work.
GAN Lab Website: https://lnkd.in/eYV8QvrJ
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค8
Forwarded from Learn Python Hub
Media is too big
VIEW IN TELEGRAM
Learn how LLMs work in less than 10 minutes
And honestly? This is probably the best visualization of #LLMs ever made.
https://t.me/Python53
And honestly? This is probably the best visualization of #LLMs ever made.
https://t.me/Python53
โค9
This is not a full-fledged course with a unified program, but a collection of nine separate videos on PyTorch and neural networks gathered in one playlist.
Inside, there are materials of different levels and formats that are suitable for selective study of topics, practice, and a general understanding of the direction.
What's here:
The collection is suitable for those who are already familiar with Python and want to selectively study PyTorch without a strict study plan โ get it here.๐ฎ Introductory videos on PyTorch and the basics of neural networks;๐ฎ Practical analyses with code writing and project examples;๐ฎ Materials on computer vision and working with medical images;๐ฎ Examples of creating chat bots and models on PyTorch;๐ฎ Analyses of large language models and generative neural networks;๐ฎ Examples of training agents and reinforcement tasks;๐ฎ Videos from different authors without a general learning logic.
https://www.youtube.com/playlist?list=PLp0BA-8NZ4bhBNWvUBPDztbzLar9Jcgd-
tags: #pytorch #DeepLearning #python
Please open Telegram to view this post
VIEW IN TELEGRAM
โค9๐2๐ฅ1
Forwarded from Machine Learning
A convenient cheat sheet for those who work with data analysis and ML.
Here are collected the main functions for:
โถ๏ธ Creating and modifying arrays;โถ๏ธ Mathematical operations;โถ๏ธ Working with matrices and vectors;โถ๏ธ Sorting and searching for values.
Save it for yourself โ it will come in handy when working with NumPy.
tags: #NumPy #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
โค9๐2
Media is too big
VIEW IN TELEGRAM
OnSpace Mobile App builder: Build AI Apps in minutes
Visit website: https://www.onspace.ai/?via=tg_datas
Or Download app:https://onspace.onelink.me/za8S/h1jb6sb9?c=datas
With OnSpace, you can build website or AI Mobile Apps by chatting with AI, and publish to PlayStore or AppStore.
What will you get:
โ๏ธ Create app or website by chatting with AI;
โ๏ธ Integrate with Any top AI power just by giving order (like Sora2, Nanobanan Pro & Gemini 3 Pro);
โ๏ธ Download APK,AAB file, publish to AppStore.
โ๏ธ Add payments and monetize like in-app-purchase and Stripe.
โ๏ธ Functional login & signup.
โ๏ธ Database + dashboard in minutes.
โ๏ธ Full tutorial on YouTube and within 1 day customer service
Visit website: https://www.onspace.ai/?via=tg_datas
Or Download app:https://onspace.onelink.me/za8S/h1jb6sb9?c=datas
With OnSpace, you can build website or AI Mobile Apps by chatting with AI, and publish to PlayStore or AppStore.
What will you get:
Please open Telegram to view this post
VIEW IN TELEGRAM
โค6๐ฅ2
This media is not supported in your browser
VIEW IN TELEGRAM
ML engineers, this is for you: an interactive math tutorial for machine learning
Recently, they posted several more blogs on the basics of mathematical analysis for machine learning, with interactive simulations.
Among the topics:
- backprop and gradient descent
- local minima and saddle points
- vector fields
- Taylor series
- Jacobian and Hessian
- partial derivatives
The material is specifically focused on the ML context, with an emphasis on clarity and practical understanding.โ๏ธ
Let's practice here
๐ @codeprogrammer
Recently, they posted several more blogs on the basics of mathematical analysis for machine learning, with interactive simulations.
Among the topics:
- backprop and gradient descent
- local minima and saddle points
- vector fields
- Taylor series
- Jacobian and Hessian
- partial derivatives
The material is specifically focused on the ML context, with an emphasis on clarity and practical understanding.
Let's practice here
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5
This media is not supported in your browser
VIEW IN TELEGRAM
For beginners: a free online course on Python programming
On the site, you can run code directly in the browser, solve problems, and learn the basics of the language step by step
Start your improvement๐
๐ @codeprogrammer
On the site, you can run code directly in the browser, solve problems, and learn the basics of the language step by step
Start your improvement
Please open Telegram to view this post
VIEW IN TELEGRAM
โค6๐2
nature papers: 1400$
Q1 and Q2 papers 900$
Q3 and Q4 papers 500$
Doctoral thesis (complete) 700$
M.S thesis 300$
paper simulation 200$
Contact me
https://t.me/m/-nTmpj5vYzNk
Q1 and Q2 papers 900$
Q3 and Q4 papers 500$
Doctoral thesis (complete) 700$
M.S thesis 300$
paper simulation 200$
Contact me
https://t.me/m/-nTmpj5vYzNk
โค2
๐๐ฎ๐ฉ๐ฉ๐จ๐ซ๐ญ_๐๐๐๐ญ๐จ๐ซ_๐๐๐๐ก๐ข๐ง๐๐ฌ_๐๐๐โฃ.pdf
5.8 MB
๐ ๐๐ฎ๐ฉ๐ฉ๐จ๐ซ๐ญ ๐๐๐๐ญ๐จ๐ซ ๐๐๐๐ก๐ข๐ง๐๐ฌ (๐๐๐)โฃ
๐น What I covered todayโฃ
What SVM is and how it worksโฃ
Concept of hyperplane, margin, and support vectorsโฃ
Hard margin vs Soft marginโฃ
Role of kernel trickโฃ
โฃ
When SVM performs better than other classifiersโฃ
โฃ
๐ฏ ๐๐จ๐ฉ ๐๐ ๐๐ง๐ญ๐๐ซ๐ฏ๐ข๐๐ฐ ๐๐ฎ๐๐ฌ๐ญ๐ข๐จ๐ง๐ฌ (๐๐ฎ๐ฌ๐ญ-๐๐ง๐จ๐ฐ)โฃ
โฃ
1๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐๐ถ๐ฑ๐ฑ๐ฐ๐ณ๐ต ๐๐ฆ๐ค๐ต๐ฐ๐ณ ๐๐ข๐ค๐ฉ๐ช๐ฏ๐ฆ (๐๐๐)?โฃ
2๏ธโฃ ๐๐ฉ๐ข๐ต ๐ข๐ณ๐ฆ ๐ด๐ถ๐ฑ๐ฑ๐ฐ๐ณ๐ต ๐ท๐ฆ๐ค๐ต๐ฐ๐ณ๐ด?โฃ
3๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ข ๐ฎ๐ข๐ณ๐จ๐ช๐ฏ ๐ช๐ฏ ๐๐๐?โฃ
4๏ธโฃ ๐๐ช๐ง๐ง๐ฆ๐ณ๐ฆ๐ฏ๐ค๐ฆ ๐ฃ๐ฆ๐ต๐ธ๐ฆ๐ฆ๐ฏ ๐ฉ๐ข๐ณ๐ฅ ๐ฎ๐ข๐ณ๐จ๐ช๐ฏ ๐ข๐ฏ๐ฅ ๐ด๐ฐ๐ง๐ต ๐ฎ๐ข๐ณ๐จ๐ช๐ฏ?โฃ
5๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ต๐ฉ๐ฆ ๐ฌ๐ฆ๐ณ๐ฏ๐ฆ๐ญ ๐ต๐ณ๐ช๐ค๐ฌ ๐ข๐ฏ๐ฅ ๐ธ๐ฉ๐บ ๐ช๐ด ๐ช๐ต ๐ฏ๐ฆ๐ฆ๐ฅ๐ฆ๐ฅ?โฃ
6๏ธโฃ ๐๐ฐ๐ฎ๐ฎ๐ฐ๐ฏ ๐ฌ๐ฆ๐ณ๐ฏ๐ฆ๐ญ๐ด ๐ถ๐ด๐ฆ๐ฅ ๐ช๐ฏ ๐๐๐ (๐๐ช๐ฏ๐ฆ๐ข๐ณ, ๐๐ฐ๐ญ๐บ๐ฏ๐ฐ๐ฎ๐ช๐ข๐ญ, ๐๐๐)?โฃ
7๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ต๐ฉ๐ฆ ๐ณ๐ฐ๐ญ๐ฆ ๐ฐ๐ง ๐ (๐ณ๐ฆ๐จ๐ถ๐ญ๐ข๐ณ๐ช๐ป๐ข๐ต๐ช๐ฐ๐ฏ ๐ฑ๐ข๐ณ๐ข๐ฎ๐ฆ๐ต๐ฆ๐ณ)?โฃ
8๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐จ๐ข๐ฎ๐ฎ๐ข ๐ช๐ฏ ๐๐๐ ๐ฌ๐ฆ๐ณ๐ฏ๐ฆ๐ญ?โฃ
9๏ธโฃ ๐๐ข๐ฏ #๐๐๐ ๐ฃ๐ฆ ๐ถ๐ด๐ฆ๐ฅ ๐ง๐ฐ๐ณ ๐ณ๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ? (๐๐๐)โฃ
๐ ๐๐ฉ๐ฆ๐ฏ ๐ด๐ฉ๐ฐ๐ถ๐ญ๐ฅ ๐บ๐ฐ๐ถ ๐ข๐ท๐ฐ๐ช๐ฅ ๐ถ๐ด๐ช๐ฏ๐จ ๐๐๐?โฃ
https://t.me/CodeProgrammerโ๏ธ
๐น What I covered todayโฃ
What SVM is and how it worksโฃ
Concept of hyperplane, margin, and support vectorsโฃ
Hard margin vs Soft marginโฃ
Role of kernel trickโฃ
โฃ
When SVM performs better than other classifiersโฃ
โฃ
๐ฏ ๐๐จ๐ฉ ๐๐ ๐๐ง๐ญ๐๐ซ๐ฏ๐ข๐๐ฐ ๐๐ฎ๐๐ฌ๐ญ๐ข๐จ๐ง๐ฌ (๐๐ฎ๐ฌ๐ญ-๐๐ง๐จ๐ฐ)โฃ
โฃ
1๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐๐ถ๐ฑ๐ฑ๐ฐ๐ณ๐ต ๐๐ฆ๐ค๐ต๐ฐ๐ณ ๐๐ข๐ค๐ฉ๐ช๐ฏ๐ฆ (๐๐๐)?โฃ
2๏ธโฃ ๐๐ฉ๐ข๐ต ๐ข๐ณ๐ฆ ๐ด๐ถ๐ฑ๐ฑ๐ฐ๐ณ๐ต ๐ท๐ฆ๐ค๐ต๐ฐ๐ณ๐ด?โฃ
3๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ข ๐ฎ๐ข๐ณ๐จ๐ช๐ฏ ๐ช๐ฏ ๐๐๐?โฃ
4๏ธโฃ ๐๐ช๐ง๐ง๐ฆ๐ณ๐ฆ๐ฏ๐ค๐ฆ ๐ฃ๐ฆ๐ต๐ธ๐ฆ๐ฆ๐ฏ ๐ฉ๐ข๐ณ๐ฅ ๐ฎ๐ข๐ณ๐จ๐ช๐ฏ ๐ข๐ฏ๐ฅ ๐ด๐ฐ๐ง๐ต ๐ฎ๐ข๐ณ๐จ๐ช๐ฏ?โฃ
5๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ต๐ฉ๐ฆ ๐ฌ๐ฆ๐ณ๐ฏ๐ฆ๐ญ ๐ต๐ณ๐ช๐ค๐ฌ ๐ข๐ฏ๐ฅ ๐ธ๐ฉ๐บ ๐ช๐ด ๐ช๐ต ๐ฏ๐ฆ๐ฆ๐ฅ๐ฆ๐ฅ?โฃ
6๏ธโฃ ๐๐ฐ๐ฎ๐ฎ๐ฐ๐ฏ ๐ฌ๐ฆ๐ณ๐ฏ๐ฆ๐ญ๐ด ๐ถ๐ด๐ฆ๐ฅ ๐ช๐ฏ ๐๐๐ (๐๐ช๐ฏ๐ฆ๐ข๐ณ, ๐๐ฐ๐ญ๐บ๐ฏ๐ฐ๐ฎ๐ช๐ข๐ญ, ๐๐๐)?โฃ
7๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ต๐ฉ๐ฆ ๐ณ๐ฐ๐ญ๐ฆ ๐ฐ๐ง ๐ (๐ณ๐ฆ๐จ๐ถ๐ญ๐ข๐ณ๐ช๐ป๐ข๐ต๐ช๐ฐ๐ฏ ๐ฑ๐ข๐ณ๐ข๐ฎ๐ฆ๐ต๐ฆ๐ณ)?โฃ
8๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐จ๐ข๐ฎ๐ฎ๐ข ๐ช๐ฏ ๐๐๐ ๐ฌ๐ฆ๐ณ๐ฏ๐ฆ๐ญ?โฃ
9๏ธโฃ ๐๐ข๐ฏ #๐๐๐ ๐ฃ๐ฆ ๐ถ๐ด๐ฆ๐ฅ ๐ง๐ฐ๐ณ ๐ณ๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ? (๐๐๐)โฃ
๐ ๐๐ฉ๐ฆ๐ฏ ๐ด๐ฉ๐ฐ๐ถ๐ญ๐ฅ ๐บ๐ฐ๐ถ ๐ข๐ท๐ฐ๐ช๐ฅ ๐ถ๐ด๐ช๐ฏ๐จ ๐๐๐?โฃ
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค6
This channels is for Programmers, Coders, Software Engineers.
0๏ธโฃ Python
1๏ธโฃ Data Science
2๏ธโฃ Machine Learning
3๏ธโฃ Data Visualization
4๏ธโฃ Artificial Intelligence
5๏ธโฃ Data Analysis
6๏ธโฃ Statistics
7๏ธโฃ Deep Learning
8๏ธโฃ programming Languages
โ
https://t.me/addlist/8_rRW2scgfRhOTc0
โ
https://t.me/Codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5๐1
Forwarded from Machine Learning
Media is too big
VIEW IN TELEGRAM
The single most undervalued fact of linear algebra: matrices are graphs, and graphs are matrices.
Encoding matrices as graphs is a cheat code, making complex behavior simple to study.
https://t.me/DataScienceM
Encoding matrices as graphs is a cheat code, making complex behavior simple to study.
https://t.me/DataScienceM
โค4๐4
๐_๐๐จ๐ ๐ข๐ฌ๐ญ๐ข๐_๐๐๐ ๐ซ๐๐ฌ๐ฌ๐ข๐จ๐งโฃโฃ.pdf
10.5 MB
๐ ๐๐จ๐ ๐ข๐ฌ๐ญ๐ข๐ ๐๐๐ ๐ซ๐๐ฌ๐ฌ๐ข๐จ๐งโฃโฃ
Why Logistic Regression is not regressionโฃโฃ
How Sigmoid (Logistic) function worksโฃโฃ
Binary vs Multiclass Logistic Regressionโฃโฃ
Decision boundaries and probability interpretationโฃโฃ
Where Logistic Regression beats complex modelsโฃโฃ
โฃโฃ
๐ฏ ๐๐จ๐ฉ ๐๐ ๐๐ง๐ญ๐๐ซ๐ฏ๐ข๐๐ฐ ๐๐ฎ๐๐ฌ๐ญ๐ข๐จ๐ง๐ฌ (๐๐ฎ๐ฌ๐ญ-๐๐ง๐จ๐ฐ)โฃโฃ
โฃโฃ
1๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐๐ฐ๐จ๐ช๐ด๐ต๐ช๐ค ๐๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ?โฃโฃ
2๏ธโฃ ๐๐ฉ๐บ ๐ช๐ด ๐๐ฐ๐จ๐ช๐ด๐ต๐ช๐ค ๐๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ ๐ถ๐ด๐ฆ๐ฅ ๐ง๐ฐ๐ณ ๐ค๐ญ๐ข๐ด๐ด๐ช๐ง๐ช๐ค๐ข๐ต๐ช๐ฐ๐ฏ, ๐ฏ๐ฐ๐ต ๐ณ๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ?โฃโฃ
3๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ต๐ฉ๐ฆ ๐๐ช๐จ๐ฎ๐ฐ๐ช๐ฅ ๐ง๐ถ๐ฏ๐ค๐ต๐ช๐ฐ๐ฏ ๐ข๐ฏ๐ฅ ๐ธ๐ฉ๐บ ๐ช๐ด ๐ช๐ต ๐ฏ๐ฆ๐ฆ๐ฅ๐ฆ๐ฅ?โฃโฃ
4๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐๐ฐ๐จ ๐๐ฐ๐ด๐ด / ๐๐ณ๐ฐ๐ด๐ด-๐๐ฏ๐ต๐ณ๐ฐ๐ฑ๐บ ๐๐ฐ๐ด๐ด?โฃโฃ
5๏ธโฃ ๐๐ช๐ง๐ง๐ฆ๐ณ๐ฆ๐ฏ๐ค๐ฆ ๐ฃ๐ฆ๐ต๐ธ๐ฆ๐ฆ๐ฏ ๐๐ฐ๐จ๐ช๐ด๐ต๐ช๐ค ๐๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ ๐ข๐ฏ๐ฅ ๐๐ช๐ฏ๐ฆ๐ข๐ณ ๐๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ?โฃโฃ
6๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ข ๐ฅ๐ฆ๐ค๐ช๐ด๐ช๐ฐ๐ฏ ๐ฃ๐ฐ๐ถ๐ฏ๐ฅ๐ข๐ณ๐บ?โฃโฃ
7๏ธโฃ ๐๐ฐ๐ธ ๐ฅ๐ฐ๐ฆ๐ด ๐๐ฆ๐จ๐ถ๐ญ๐ข๐ณ๐ช๐ป๐ข๐ต๐ช๐ฐ๐ฏ (๐1 ๐ท๐ด ๐2) ๐ธ๐ฐ๐ณ๐ฌ ๐ช๐ฏ ๐๐ฐ๐จ๐ช๐ด๐ต๐ช๐ค ๐๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ?โฃโฃ
8๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐๐ฅ๐ฅ๐ด ๐๐ข๐ต๐ช๐ฐ ๐ข๐ฏ๐ฅ ๐ฉ๐ฐ๐ธ ๐ฅ๐ฐ ๐บ๐ฐ๐ถ ๐ช๐ฏ๐ต๐ฆ๐ณ๐ฑ๐ณ๐ฆ๐ต ๐ค๐ฐ๐ฆ๐ง๐ง๐ช๐ค๐ช๐ฆ๐ฏ๐ต๐ด?โฃโฃ
9๏ธโฃ ๐๐ฐ๐ธ ๐ฅ๐ฐ ๐บ๐ฐ๐ถ ๐ฉ๐ข๐ฏ๐ฅ๐ญ๐ฆ ๐ค๐ญ๐ข๐ด๐ด ๐ช๐ฎ๐ฃ๐ข๐ญ๐ข๐ฏ๐ค๐ฆ?โฃโฃ
๐ ๐๐ฉ๐ฆ๐ฏ ๐ด๐ฉ๐ฐ๐ถ๐ญ๐ฅ ๐บ๐ฐ๐ถ ๐ข๐ท๐ฐ๐ช๐ฅ ๐๐ฐ๐จ๐ช๐ด๐ต๐ช๐ค ๐๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ?โฃโฃ
https://t.me/CodeProgrammerโ
Why Logistic Regression is not regressionโฃโฃ
How Sigmoid (Logistic) function worksโฃโฃ
Binary vs Multiclass Logistic Regressionโฃโฃ
Decision boundaries and probability interpretationโฃโฃ
Where Logistic Regression beats complex modelsโฃโฃ
โฃโฃ
๐ฏ ๐๐จ๐ฉ ๐๐ ๐๐ง๐ญ๐๐ซ๐ฏ๐ข๐๐ฐ ๐๐ฎ๐๐ฌ๐ญ๐ข๐จ๐ง๐ฌ (๐๐ฎ๐ฌ๐ญ-๐๐ง๐จ๐ฐ)โฃโฃ
โฃโฃ
1๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐๐ฐ๐จ๐ช๐ด๐ต๐ช๐ค ๐๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ?โฃโฃ
2๏ธโฃ ๐๐ฉ๐บ ๐ช๐ด ๐๐ฐ๐จ๐ช๐ด๐ต๐ช๐ค ๐๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ ๐ถ๐ด๐ฆ๐ฅ ๐ง๐ฐ๐ณ ๐ค๐ญ๐ข๐ด๐ด๐ช๐ง๐ช๐ค๐ข๐ต๐ช๐ฐ๐ฏ, ๐ฏ๐ฐ๐ต ๐ณ๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ?โฃโฃ
3๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ต๐ฉ๐ฆ ๐๐ช๐จ๐ฎ๐ฐ๐ช๐ฅ ๐ง๐ถ๐ฏ๐ค๐ต๐ช๐ฐ๐ฏ ๐ข๐ฏ๐ฅ ๐ธ๐ฉ๐บ ๐ช๐ด ๐ช๐ต ๐ฏ๐ฆ๐ฆ๐ฅ๐ฆ๐ฅ?โฃโฃ
4๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐๐ฐ๐จ ๐๐ฐ๐ด๐ด / ๐๐ณ๐ฐ๐ด๐ด-๐๐ฏ๐ต๐ณ๐ฐ๐ฑ๐บ ๐๐ฐ๐ด๐ด?โฃโฃ
5๏ธโฃ ๐๐ช๐ง๐ง๐ฆ๐ณ๐ฆ๐ฏ๐ค๐ฆ ๐ฃ๐ฆ๐ต๐ธ๐ฆ๐ฆ๐ฏ ๐๐ฐ๐จ๐ช๐ด๐ต๐ช๐ค ๐๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ ๐ข๐ฏ๐ฅ ๐๐ช๐ฏ๐ฆ๐ข๐ณ ๐๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ?โฃโฃ
6๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ข ๐ฅ๐ฆ๐ค๐ช๐ด๐ช๐ฐ๐ฏ ๐ฃ๐ฐ๐ถ๐ฏ๐ฅ๐ข๐ณ๐บ?โฃโฃ
7๏ธโฃ ๐๐ฐ๐ธ ๐ฅ๐ฐ๐ฆ๐ด ๐๐ฆ๐จ๐ถ๐ญ๐ข๐ณ๐ช๐ป๐ข๐ต๐ช๐ฐ๐ฏ (๐1 ๐ท๐ด ๐2) ๐ธ๐ฐ๐ณ๐ฌ ๐ช๐ฏ ๐๐ฐ๐จ๐ช๐ด๐ต๐ช๐ค ๐๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ?โฃโฃ
8๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐๐ฅ๐ฅ๐ด ๐๐ข๐ต๐ช๐ฐ ๐ข๐ฏ๐ฅ ๐ฉ๐ฐ๐ธ ๐ฅ๐ฐ ๐บ๐ฐ๐ถ ๐ช๐ฏ๐ต๐ฆ๐ณ๐ฑ๐ณ๐ฆ๐ต ๐ค๐ฐ๐ฆ๐ง๐ง๐ช๐ค๐ช๐ฆ๐ฏ๐ต๐ด?โฃโฃ
9๏ธโฃ ๐๐ฐ๐ธ ๐ฅ๐ฐ ๐บ๐ฐ๐ถ ๐ฉ๐ข๐ฏ๐ฅ๐ญ๐ฆ ๐ค๐ญ๐ข๐ด๐ด ๐ช๐ฎ๐ฃ๐ข๐ญ๐ข๐ฏ๐ค๐ฆ?โฃโฃ
๐ ๐๐ฉ๐ฆ๐ฏ ๐ด๐ฉ๐ฐ๐ถ๐ญ๐ฅ ๐บ๐ฐ๐ถ ๐ข๐ท๐ฐ๐ช๐ฅ ๐๐ฐ๐จ๐ช๐ด๐ต๐ช๐ค ๐๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ?โฃโฃ
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5
๐ฉโ๐ป FREE 2026 IT Learning Kits Giveaway
๐ฅWhether you're preparing for #Cisco #AWS #PMP #Python #Excel #Google #Microsoft #AI or any other in-demand certification โ SPOTO has got you covered!
๐ Explore Our FREE Study Resources
ยทIT Certs E-book : https://bit.ly/3YvSMHL
ยทIT exams skill Test : https://bit.ly/4r4VHnd
ยทPython, ITIL, PMP, Excel, Cyber Security, cloud, SQL Courses : https://bit.ly/4qNWl8r
ยทFree AI online preparation material and support tools : https://bit.ly/4qKiKTN
๐ Need IT Certs Exam Help๏ผ contact: wa.link/dm4kyz
๐ฒ Join IT Study Group for insider tips & expert support:
https://chat.whatsapp.com/BEQ9WrfLnpg1SgzGQw69oM
๐ฅWhether you're preparing for #Cisco #AWS #PMP #Python #Excel #Google #Microsoft #AI or any other in-demand certification โ SPOTO has got you covered!
๐ Explore Our FREE Study Resources
ยทIT Certs E-book : https://bit.ly/3YvSMHL
ยทIT exams skill Test : https://bit.ly/4r4VHnd
ยทPython, ITIL, PMP, Excel, Cyber Security, cloud, SQL Courses : https://bit.ly/4qNWl8r
ยทFree AI online preparation material and support tools : https://bit.ly/4qKiKTN
๐ Need IT Certs Exam Help๏ผ contact: wa.link/dm4kyz
๐ฒ Join IT Study Group for insider tips & expert support:
https://chat.whatsapp.com/BEQ9WrfLnpg1SgzGQw69oM
โค4๐2
Machine Learning Interview prep
repo:
https://github.com/khangich/machine-learning-interview?tab=readme-ov-file
https://t.me/CodeProgrammer โ๏ธ
repo:
https://github.com/khangich/machine-learning-interview?tab=readme-ov-file
https://t.me/CodeProgrammer โ๏ธ
โค5๐2
๐_๐๐๐๐ซ๐๐ฌ๐ญ_๐๐๐ข๐ ๐ก๐๐จ๐ซ๐ฌ_๐๐๐โฃ.pdf
2.4 MB
๐ง ๐-๐๐๐๐ซ๐๐ฌ๐ญ ๐๐๐ข๐ ๐ก๐๐จ๐ซ๐ฌ (๐๐๐)โฃ
๐น ๐๐ก๐๐ญ ๐ ๐๐จ๐ฏ๐๐ซ๐๐ ๐ญ๐จ๐๐๐ฒโฃ
๐๐ก๐๐ญ ๐๐๐ ๐ข๐ฌ ๐๐ง๐ ๐ก๐จ๐ฐ ๐ข๐ญ ๐ฐ๐จ๐ซ๐ค๐ฌโฃ
๐๐ข๐๐๐๐ซ๐๐ง๐๐ ๐๐๐ญ๐ฐ๐๐๐ง ๐๐๐ ๐๐จ๐ซ ๐๐ฅ๐๐ฌ๐ฌ๐ข๐๐ข๐๐๐ญ๐ข๐จ๐ง ๐ฏ๐ฌ ๐๐๐ ๐ซ๐๐ฌ๐ฌ๐ข๐จ๐งโฃ
๐๐จ๐ฅ๐ ๐จ๐ ๐ (๐ก๐ฒ๐ฉ๐๐ซ๐ฉ๐๐ซ๐๐ฆ๐๐ญ๐๐ซ)โฃ
๐๐ข๐ฌ๐ญ๐๐ง๐๐ ๐ฆ๐๐ญ๐ซ๐ข๐๐ฌ: ๐๐ฎ๐๐ฅ๐ข๐๐๐๐ง ๐ฏ๐ฌ ๐๐๐ง๐ก๐๐ญ๐ญ๐๐งโฃ
๐๐ก๐ฒ ๐๐๐ ๐ข๐ฌ ๐๐๐ฅ๐ฅ๐๐ ๐ ๐ฅ๐๐ณ๐ฒ / ๐ข๐ง๐ฌ๐ญ๐๐ง๐๐-๐๐๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐๐ซโฃ
โฃ
๐ฏ ๐๐จ๐ฉ ๐๐ ๐๐ง๐ญ๐๐ซ๐ฏ๐ข๐๐ฐ ๐๐ฎ๐๐ฌ๐ญ๐ข๐จ๐ง๐ฌ (๐๐ฎ๐ฌ๐ญ-๐๐ง๐จ๐ฐ)โฃ
โฃ
1๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐-๐๐ฆ๐ข๐ณ๐ฆ๐ด๐ต ๐๐ฆ๐ช๐จ๐ฉ๐ฃ๐ฐ๐ณ๐ด (๐๐๐)?โฃ
2๏ธโฃ ๐๐ฉ๐บ ๐ช๐ด ๐๐๐ ๐ค๐ข๐ญ๐ญ๐ฆ๐ฅ ๐ข ๐ญ๐ข๐ป๐บ ๐ญ๐ฆ๐ข๐ณ๐ฏ๐ช๐ฏ๐จ ๐ข๐ญ๐จ๐ฐ๐ณ๐ช๐ต๐ฉ๐ฎ?โฃ
3๏ธโฃ ๐๐ช๐ง๐ง๐ฆ๐ณ๐ฆ๐ฏ๐ค๐ฆ ๐ฃ๐ฆ๐ต๐ธ๐ฆ๐ฆ๐ฏ ๐๐๐ ๐ค๐ญ๐ข๐ด๐ด๐ช๐ง๐ช๐ค๐ข๐ต๐ช๐ฐ๐ฏ ๐ข๐ฏ๐ฅ ๐๐๐ ๐ณ๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ?โฃ
4๏ธโฃ ๐๐ฐ๐ธ ๐ฅ๐ฐ ๐บ๐ฐ๐ถ ๐ค๐ฉ๐ฐ๐ฐ๐ด๐ฆ ๐ต๐ฉ๐ฆ ๐ท๐ข๐ญ๐ถ๐ฆ ๐ฐ๐ง ๐?โฃ
5๏ธโฃ ๐๐ฉ๐ข๐ต ๐ฉ๐ข๐ฑ๐ฑ๐ฆ๐ฏ๐ด ๐ธ๐ฉ๐ฆ๐ฏ ๐ ๐ช๐ด ๐ต๐ฐ๐ฐ ๐ด๐ฎ๐ข๐ญ๐ญ ๐ฐ๐ณ ๐ต๐ฐ๐ฐ ๐ญ๐ข๐ณ๐จ๐ฆ?โฃ
6๏ธโฃ ๐๐ฉ๐ข๐ต ๐ฅ๐ช๐ด๐ต๐ข๐ฏ๐ค๐ฆ ๐ฎ๐ฆ๐ต๐ณ๐ช๐ค๐ด ๐ข๐ณ๐ฆ ๐ค๐ฐ๐ฎ๐ฎ๐ฐ๐ฏ๐ญ๐บ ๐ถ๐ด๐ฆ๐ฅ ๐ช๐ฏ ๐๐๐?โฃ
7๏ธโฃ ๐๐ฉ๐บ ๐ฅ๐ฐ๐ฆ๐ด ๐๐๐ ๐ฑ๐ฆ๐ณ๐ง๐ฐ๐ณ๐ฎ ๐ฑ๐ฐ๐ฐ๐ณ๐ญ๐บ ๐ฐ๐ฏ ๐ฉ๐ช๐จ๐ฉ-๐ฅ๐ช๐ฎ๐ฆ๐ฏ๐ด๐ช๐ฐ๐ฏ๐ข๐ญ ๐ฅ๐ข๐ต๐ข?โฃ
8๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ต๐ฉ๐ฆ ๐ต๐ช๐ฎ๐ฆ ๐ค๐ฐ๐ฎ๐ฑ๐ญ๐ฆ๐น๐ช๐ต๐บ ๐ฐ๐ง ๐๐๐?โฃ
9๏ธโฃ ๐๐ฐ๐ธ ๐ฅ๐ฐ ๐๐-๐๐ณ๐ฆ๐ฆ ๐ข๐ฏ๐ฅ ๐๐ข๐ญ๐ญ-๐๐ณ๐ฆ๐ฆ ๐ช๐ฎ๐ฑ๐ณ๐ฐ๐ท๐ฆ ๐๐๐ ๐ฑ๐ฆ๐ณ๐ง๐ฐ๐ณ๐ฎ๐ข๐ฏ๐ค๐ฆ?โฃ
๐ ๐๐ฉ๐ฆ๐ฏ ๐ด๐ฉ๐ฐ๐ถ๐ญ๐ฅ ๐บ๐ฐ๐ถ ๐ข๐ท๐ฐ๐ช๐ฅ ๐ถ๐ด๐ช๐ฏ๐จ #๐๐๐?โฃ
https://t.me/CodeProgrammerโญ๏ธ
๐น ๐๐ก๐๐ญ ๐ ๐๐จ๐ฏ๐๐ซ๐๐ ๐ญ๐จ๐๐๐ฒโฃ
๐๐ก๐๐ญ ๐๐๐ ๐ข๐ฌ ๐๐ง๐ ๐ก๐จ๐ฐ ๐ข๐ญ ๐ฐ๐จ๐ซ๐ค๐ฌโฃ
๐๐ข๐๐๐๐ซ๐๐ง๐๐ ๐๐๐ญ๐ฐ๐๐๐ง ๐๐๐ ๐๐จ๐ซ ๐๐ฅ๐๐ฌ๐ฌ๐ข๐๐ข๐๐๐ญ๐ข๐จ๐ง ๐ฏ๐ฌ ๐๐๐ ๐ซ๐๐ฌ๐ฌ๐ข๐จ๐งโฃ
๐๐จ๐ฅ๐ ๐จ๐ ๐ (๐ก๐ฒ๐ฉ๐๐ซ๐ฉ๐๐ซ๐๐ฆ๐๐ญ๐๐ซ)โฃ
๐๐ข๐ฌ๐ญ๐๐ง๐๐ ๐ฆ๐๐ญ๐ซ๐ข๐๐ฌ: ๐๐ฎ๐๐ฅ๐ข๐๐๐๐ง ๐ฏ๐ฌ ๐๐๐ง๐ก๐๐ญ๐ญ๐๐งโฃ
๐๐ก๐ฒ ๐๐๐ ๐ข๐ฌ ๐๐๐ฅ๐ฅ๐๐ ๐ ๐ฅ๐๐ณ๐ฒ / ๐ข๐ง๐ฌ๐ญ๐๐ง๐๐-๐๐๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐๐ซโฃ
โฃ
๐ฏ ๐๐จ๐ฉ ๐๐ ๐๐ง๐ญ๐๐ซ๐ฏ๐ข๐๐ฐ ๐๐ฎ๐๐ฌ๐ญ๐ข๐จ๐ง๐ฌ (๐๐ฎ๐ฌ๐ญ-๐๐ง๐จ๐ฐ)โฃ
โฃ
1๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐-๐๐ฆ๐ข๐ณ๐ฆ๐ด๐ต ๐๐ฆ๐ช๐จ๐ฉ๐ฃ๐ฐ๐ณ๐ด (๐๐๐)?โฃ
2๏ธโฃ ๐๐ฉ๐บ ๐ช๐ด ๐๐๐ ๐ค๐ข๐ญ๐ญ๐ฆ๐ฅ ๐ข ๐ญ๐ข๐ป๐บ ๐ญ๐ฆ๐ข๐ณ๐ฏ๐ช๐ฏ๐จ ๐ข๐ญ๐จ๐ฐ๐ณ๐ช๐ต๐ฉ๐ฎ?โฃ
3๏ธโฃ ๐๐ช๐ง๐ง๐ฆ๐ณ๐ฆ๐ฏ๐ค๐ฆ ๐ฃ๐ฆ๐ต๐ธ๐ฆ๐ฆ๐ฏ ๐๐๐ ๐ค๐ญ๐ข๐ด๐ด๐ช๐ง๐ช๐ค๐ข๐ต๐ช๐ฐ๐ฏ ๐ข๐ฏ๐ฅ ๐๐๐ ๐ณ๐ฆ๐จ๐ณ๐ฆ๐ด๐ด๐ช๐ฐ๐ฏ?โฃ
4๏ธโฃ ๐๐ฐ๐ธ ๐ฅ๐ฐ ๐บ๐ฐ๐ถ ๐ค๐ฉ๐ฐ๐ฐ๐ด๐ฆ ๐ต๐ฉ๐ฆ ๐ท๐ข๐ญ๐ถ๐ฆ ๐ฐ๐ง ๐?โฃ
5๏ธโฃ ๐๐ฉ๐ข๐ต ๐ฉ๐ข๐ฑ๐ฑ๐ฆ๐ฏ๐ด ๐ธ๐ฉ๐ฆ๐ฏ ๐ ๐ช๐ด ๐ต๐ฐ๐ฐ ๐ด๐ฎ๐ข๐ญ๐ญ ๐ฐ๐ณ ๐ต๐ฐ๐ฐ ๐ญ๐ข๐ณ๐จ๐ฆ?โฃ
6๏ธโฃ ๐๐ฉ๐ข๐ต ๐ฅ๐ช๐ด๐ต๐ข๐ฏ๐ค๐ฆ ๐ฎ๐ฆ๐ต๐ณ๐ช๐ค๐ด ๐ข๐ณ๐ฆ ๐ค๐ฐ๐ฎ๐ฎ๐ฐ๐ฏ๐ญ๐บ ๐ถ๐ด๐ฆ๐ฅ ๐ช๐ฏ ๐๐๐?โฃ
7๏ธโฃ ๐๐ฉ๐บ ๐ฅ๐ฐ๐ฆ๐ด ๐๐๐ ๐ฑ๐ฆ๐ณ๐ง๐ฐ๐ณ๐ฎ ๐ฑ๐ฐ๐ฐ๐ณ๐ญ๐บ ๐ฐ๐ฏ ๐ฉ๐ช๐จ๐ฉ-๐ฅ๐ช๐ฎ๐ฆ๐ฏ๐ด๐ช๐ฐ๐ฏ๐ข๐ญ ๐ฅ๐ข๐ต๐ข?โฃ
8๏ธโฃ ๐๐ฉ๐ข๐ต ๐ช๐ด ๐ต๐ฉ๐ฆ ๐ต๐ช๐ฎ๐ฆ ๐ค๐ฐ๐ฎ๐ฑ๐ญ๐ฆ๐น๐ช๐ต๐บ ๐ฐ๐ง ๐๐๐?โฃ
9๏ธโฃ ๐๐ฐ๐ธ ๐ฅ๐ฐ ๐๐-๐๐ณ๐ฆ๐ฆ ๐ข๐ฏ๐ฅ ๐๐ข๐ญ๐ญ-๐๐ณ๐ฆ๐ฆ ๐ช๐ฎ๐ฑ๐ณ๐ฐ๐ท๐ฆ ๐๐๐ ๐ฑ๐ฆ๐ณ๐ง๐ฐ๐ณ๐ฎ๐ข๐ฏ๐ค๐ฆ?โฃ
๐ ๐๐ฉ๐ฆ๐ฏ ๐ด๐ฉ๐ฐ๐ถ๐ญ๐ฅ ๐บ๐ฐ๐ถ ๐ข๐ท๐ฐ๐ช๐ฅ ๐ถ๐ด๐ช๐ฏ๐จ #๐๐๐?โฃ
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3