Title: How to #blur faces in images using #OpenCv.
#programming_post talking about one of the ways to blur faces in photos using the #OpenCv library and the classifier #haarcascade_frontalface_alt
⛔️ يمكن تحميل المصنف المذكور من خلال #GitHub.
⛔️ المصدر والكود:
https://www.geeksforgeeks.org/how-to-blur-faces-in-images-using-opencv-in-python/amp/
🔴 انضم لقناة الباحثين البرمجية:
@DataScience_Books
🟢 انضم لمجتمع بايثون العربي:
@PythonArab
🟡 شارك القناة للآخرين:
@CodeProgrammer
#programming_post talking about one of the ways to blur faces in photos using the #OpenCv library and the classifier #haarcascade_frontalface_alt
⛔️ يمكن تحميل المصنف المذكور من خلال #GitHub.
⛔️ المصدر والكود:
https://www.geeksforgeeks.org/how-to-blur-faces-in-images-using-opencv-in-python/amp/
🔴 انضم لقناة الباحثين البرمجية:
@DataScience_Books
🟢 انضم لمجتمع بايثون العربي:
@PythonArab
🟡 شارك القناة للآخرين:
@CodeProgrammer
👍1
  Fetch Trending Searches using Python 🖥 
#python #programming #developer #programmer #coding #coder #softwaredeveloper #computerscience #webdev #webdeveloper #webdevelopment #pythonprogramming #pythonquiz #ai #ml #machinelearning #datascience
https://t.me/CodeProgrammer🐍 
#python #programming #developer #programmer #coding #coder #softwaredeveloper #computerscience #webdev #webdeveloper #webdevelopment #pythonprogramming #pythonquiz #ai #ml #machinelearning #datascience
https://t.me/CodeProgrammer
Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍10❤1💯1
  #Python #LearnPython #Coding #JupyterNotebooks #OpenSource #FreeLearning #DataScience #Programming #TechEducation #AllenDowney #ThinkPython
- Learn by Doing: Perfect for beginners and coders upgrading to Python 3! Hands-on examples, exercises, and projects.
- Jupyter Notebook Edition: Entire book redesigned as interactive notebooks! Run code, visualize results, and experiment live.
- Free & Open Source: Licensed under CC BY-NC-SA—download, share, and contribute!
- From a Pro: Authored by Allen Downey, computer science professor and creator of the legendary *Think Series* (*Think Stats*, *Think Bayes*).
- Clear & Engaging: Simplifies complex concepts with humor and real-world analogies.
- Updated for modern Python 3 practices.
- Fully integrated Jupyter notebooks for interactive learning.
- Expanded exercises and case studies.
- New programmers starting with Python.
- Educators teaching coding or data science.
- Data enthusiasts who want to code smarter.
#Python3 #CodeForFree #InteractiveLearning — Unlock Python’s power, one notebook at a time!
https://t.me/CodeProgrammer
Use
Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍10❤7💯2👎1
  👩🏻💻 Guys , GenAI Community has created a free Python training course where you will learn both Python and its application in generative artificial intelligence!
Here are some suitable hashtags for the description in English, in a single line:
#Python #GenAI #FreeCourse #ArtificialIntelligence #DataScience #Programming #LearnToCode #AI #MachineLearning #Coding #Tech #Education #OnlineLearning #FreeTraining #GenerativeAI
https://t.me/CodeProgrammer
Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍11❤5
  ┌ Online
┌ Online
┌ Online
┌ Online
┌ Online
┌ Online
┌ Online
┌ Online
┌ Online
┌ Online
#DataScience #Python #DataAnalysis #DataVisualization #RProgramming #DeepLearning #CommandLine #HandsOnLearning #Statistics #Bayesian #Kafka #MachineLearning #AI #Programming #FreeBooks
https://t.me/CodeProgrammer✅ 
Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍23❤13🏆3🔥2🎉2💯2👏1👨💻1🆒1
  80 Python Interview Questions.pdf
    410.4 KB
  - Covers frequently asked questions in Python interviews
#Python #DataScience #Programming #InterviewPrep #Coding #PythonInterview #TechInterview #DataScientist #PythonProgramming #LearnPython #CodeNewbie #CareerGrowth #TechJobs #PythonCode #PythonTips
https://t.me/CodeProgrammer
Please open Telegram to view this post
    VIEW IN TELEGRAM
  ❤13👍5
  Keras Cheat Sheet: Neural Networks in Python
#keras #cheatsheet #python #library #programming #guide
https://t.me/CodeProgrammer
#keras #cheatsheet #python #library #programming #guide
https://t.me/CodeProgrammer
👍10❤5
  This media is not supported in your browser
    VIEW IN TELEGRAM
  📝 Cheat sheets for data science and machine learning
Link: https://sites.google.com/view/datascience-cheat-sheets
Link: https://sites.google.com/view/datascience-cheat-sheets
#DataScience #MachineLearning #CheatSheet #stats #analytics #ML #IA #AI #programming #code #rstats #python #deeplearning #DL #CNN
https://t.me/CodeProgrammer✅ 
Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍19❤11
  Please open Telegram to view this post
    VIEW IN TELEGRAM
  Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍10👾5🆒1
  Deep Learning with Keras :: Cheat sheet
#DataScience #MachineLearning #CheatSheet #stats #analytics #ML #IA #AI #programming #code #rstats #python #deeplearning #DL #CNN #Keras #R
https://t.me/CodeProgrammer✅ 
Please open Telegram to view this post
    VIEW IN TELEGRAM
  Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍13👾2🎉1
  Top_100_Machine_Learning_Interview_Questions_Answers_Cheatshee.pdf
    5.8 MB
  Top 100 Machine Learning Interview Questions & Answers Cheatsheet
#DataScience #MachineLearning #CheatSheet #stats #analytics #ML #IA #AI #programming #code #rstats #python #deeplearning #DL #CNN #Keras #R
https://t.me/CodeProgrammer✅ 
Please open Telegram to view this post
    VIEW IN TELEGRAM
  💯14👍7🔥1🎉1
  Python Pandas Interview Questions   Answers Cheatsheet.pdf
    2.3 MB
  Python Pandas Interview Questions & Answers Cheatsheet
https://t.me/CodeProgrammer
#datascience #python #python3ofcode #programmers #coder #programming #developerlife #programminglanguage #womenwhocode #codinggirl #entrepreneurial #softwareengineer #100daysofcode #programmingisfun #developer #coding #software #programminglife #codinglife #code
https://t.me/CodeProgrammer
👍12
  Machine Learning from Scratch by Danny Friedman
This book is for readers looking to learn new machine learning algorithms or understand algorithms at a deeper level. Specifically, it is intended for readers interested in seeing machine learning algorithms derived from start to finish. Seeing these derivations might help a reader previously unfamiliar with common algorithms understand how they work intuitively. Or, seeing these derivations might help a reader experienced in modeling understand how different algorithms create the models they do and the advantages and disadvantages of each one.
This book will be most helpful for those with practice in basic modeling. It does not review best practices—such as feature engineering or balancing response variables—or discuss in depth when certain models are more appropriate than others. Instead, it focuses on the elements of those models.
🌟  Link: https://dafriedman97.github.io/mlbook/content/introduction.html
This book is for readers looking to learn new machine learning algorithms or understand algorithms at a deeper level. Specifically, it is intended for readers interested in seeing machine learning algorithms derived from start to finish. Seeing these derivations might help a reader previously unfamiliar with common algorithms understand how they work intuitively. Or, seeing these derivations might help a reader experienced in modeling understand how different algorithms create the models they do and the advantages and disadvantages of each one.
This book will be most helpful for those with practice in basic modeling. It does not review best practices—such as feature engineering or balancing response variables—or discuss in depth when certain models are more appropriate than others. Instead, it focuses on the elements of those models.
#DataScience #MachineLearning #CheatSheet #stats #analytics #ML #IA #AI #programming #code #rstats #python #deeplearning #DL #CNN #Keras #R
https://t.me/CodeProgrammer✅ 
Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍12🔥3❤2
  @Codeprogrammer Cheat Sheet Numpy.pdf
    213.7 KB
  This checklist covers the essentials of NumPy in one place, helping you:
- Create and initialize arrays
- Perform element-wise computations
- Stack and split arrays
- Apply linear algebra functions
- Efficiently index, slice, and manipulate arrays
…and much more!
Feel free to share if you found this useful, and let me know in the comments if I missed anything!
⚡️  BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟 
- Create and initialize arrays
- Perform element-wise computations
- Stack and split arrays
- Apply linear algebra functions
- Efficiently index, slice, and manipulate arrays
…and much more!
Feel free to share if you found this useful, and let me know in the comments if I missed anything!
#NumPy #Python #DataScience #MachineLearning #Automation #DeepLearning #Programming #Tech #DataAnalysis #SoftwareDevelopment #Coding #TechTips #PythonForDataScience
Please open Telegram to view this post
    VIEW IN TELEGRAM
  ❤9👍8
  In Python, lists are versatile mutable sequences with built-in methods for adding, removing, searching, sorting, and more—covering all common scenarios like dynamic data manipulation, queues, or stacks. Below is a complete breakdown of all list methods, each with syntax, an example, and output, plus key built-in functions for comprehensive use.
📚 Adding Elements
⦁ append(x): Adds a single element to the end.
  
⦁ extend(iterable): Adds all elements from an iterable to the end.
  
⦁ insert(i, x): Inserts x at index i (shifts elements right).
  
📚 Removing Elements
⦁ remove(x): Removes the first occurrence of x (raises ValueError if not found).
  
⦁ pop(i=-1): Removes and returns the element at index i (default: last).
  
⦁ clear(): Removes all elements.
  
📚 Searching and Counting
⦁ count(x): Returns the number of occurrences of x.
  
⦁ index(x[, start[, end]]): Returns the lowest index of x in the slice (raises ValueError if not found).
  
📚 Ordering and Copying
⦁ sort(key=None, reverse=False): Sorts the list in place (ascending by default; stable sort).
  
⦁ reverse(): Reverses the elements in place.
  
⦁ copy(): Returns a shallow copy of the list.
  
📚 Built-in Functions for Lists (Common Cases)
⦁ len(lst): Returns the number of elements.
  
⦁ min(lst): Returns the smallest element (raises ValueError if empty).
  
⦁ max(lst): Returns the largest element.
  
⦁ sum(lst[, start=0]): Sums the elements (start adds an offset).
  
⦁ sorted(lst, key=None, reverse=False): Returns a new sorted list (non-destructive).
  
These cover all standard operations (O(1) for append/pop from end, O(n) for most others). Use slicing
#python #lists #datastructures #methods #examples #programming
⭐  @DataScience4
📚 Adding Elements
⦁ append(x): Adds a single element to the end.
lst = [1, 2]
lst.append(3)
print(lst) # Output: [1, 2, 3]
⦁ extend(iterable): Adds all elements from an iterable to the end.
lst = [1, 2]
lst.extend([3, 4])
print(lst) # Output: [1, 2, 3, 4]
⦁ insert(i, x): Inserts x at index i (shifts elements right).
lst = [1, 3]
lst.insert(1, 2)
print(lst) # Output: [1, 2, 3]
📚 Removing Elements
⦁ remove(x): Removes the first occurrence of x (raises ValueError if not found).
lst = [1, 2, 2]
lst.remove(2)
print(lst) # Output: [1, 2]
⦁ pop(i=-1): Removes and returns the element at index i (default: last).
lst = [1, 2, 3]
item = lst.pop(1)
print(item, lst) # Output: 2 [1, 3]
⦁ clear(): Removes all elements.
lst = [1, 2, 3]
lst.clear()
print(lst) # Output: []
📚 Searching and Counting
⦁ count(x): Returns the number of occurrences of x.
lst = [1, 2, 2, 3]
print(lst.count(2)) # Output: 2
⦁ index(x[, start[, end]]): Returns the lowest index of x in the slice (raises ValueError if not found).
lst = [1, 2, 3, 2]
print(lst.index(2)) # Output: 1
📚 Ordering and Copying
⦁ sort(key=None, reverse=False): Sorts the list in place (ascending by default; stable sort).
lst = [3, 1, 2]
lst.sort()
print(lst) # Output: [1, 2, 3]
⦁ reverse(): Reverses the elements in place.
lst = [1, 2, 3]
lst.reverse()
print(lst) # Output: [3, 2, 1]
⦁ copy(): Returns a shallow copy of the list.
lst = [1, 2]
new_lst = lst.copy()
print(new_lst) # Output: [1, 2]
📚 Built-in Functions for Lists (Common Cases)
⦁ len(lst): Returns the number of elements.
lst = [1, 2, 3]
print(len(lst)) # Output: 3
⦁ min(lst): Returns the smallest element (raises ValueError if empty).
lst = [3, 1, 2]
print(min(lst)) # Output: 1
⦁ max(lst): Returns the largest element.
lst = [3, 1, 2]
print(max(lst)) # Output: 3
⦁ sum(lst[, start=0]): Sums the elements (start adds an offset).
lst = [1, 2, 3]
print(sum(lst)) # Output: 6
⦁ sorted(lst, key=None, reverse=False): Returns a new sorted list (non-destructive).
lst = [3, 1, 2]
print(sorted(lst)) # Output: [1, 2, 3]
These cover all standard operations (O(1) for append/pop from end, O(n) for most others). Use slicing
lst[start:end:step] for advanced extraction, like lst[1:3] outputs ``.#python #lists #datastructures #methods #examples #programming
Please open Telegram to view this post
    VIEW IN TELEGRAM
  ❤13👍7👏2
  Forwarded from Python Data Science Jobs & Interviews
In Python, NumPy is the cornerstone of scientific computing, offering high-performance multidimensional arrays and tools for working with them—critical for data science interviews and real-world applications! 📊  
By: @DataScienceQ 🚀
#Python #NumPy #DataScience #CodingInterview #MachineLearning #ScientificComputing #DataAnalysis #Programming #TechJobs #DeveloperTips
import numpy as np
# Array Creation - The foundation of NumPy
arr = np.array([1, 2, 3])
zeros = np.zeros((2, 3)) # 2x3 matrix of zeros
ones = np.ones((2, 2), dtype=int) # Integer matrix
arange = np.arange(0, 10, 2) # [0 2 4 6 8]
linspace = np.linspace(0, 1, 5) # [0. 0.25 0.5 0.75 1. ]
print(linspace)
# Array Attributes - Master your data's structure
matrix = np.array([[1, 2, 3], [4, 5, 6]])
print(matrix.shape) # Output: (2, 3)
print(matrix.ndim) # Output: 2
print(matrix.dtype) # Output: int64
print(matrix.size) # Output: 6
# Indexing & Slicing - Precision data access
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(data[1, 2]) # Output: 6 (row 1, col 2)
print(data[0:2, 1:3]) # Output: [[2 3], [5 6]]
print(data[:, -1]) # Output: [3 6 9] (last column)
# Reshaping Arrays - Transform dimensions effortlessly
flat = np.arange(6)
reshaped = flat.reshape(2, 3)
raveled = reshaped.ravel()
print(reshaped)
# Output: [[0 1 2], [3 4 5]]
print(raveled) # Output: [0 1 2 3 4 5]
# Stacking Arrays - Combine datasets vertically/horizontally
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
print(np.vstack((a, b))) # Vertical stack
# Output: [[1 2 3], [4 5 6]]
print(np.hstack((a, b))) # Horizontal stack
# Output: [1 2 3 4 5 6]
# Mathematical Operations - Vectorized calculations
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])
print(x + y) # Output: [5 7 9]
print(x * 2) # Output: [2 4 6]
print(np.dot(x, y)) # Output: 32 (1*4 + 2*5 + 3*6)
# Broadcasting Magic - Operate on mismatched shapes
matrix = np.array([[1, 2, 3], [4, 5, 6]])
scalar = 10
print(matrix + scalar)
# Output: [[11 12 13], [14 15 16]]
# Aggregation Functions - Statistical power in one line
values = np.array([1, 5, 3, 9, 7])
print(np.sum(values)) # Output: 25
print(np.mean(values)) # Output: 5.0
print(np.max(values)) # Output: 9
print(np.std(values)) # Output: 2.8284271247461903
# Boolean Masking - Filter data like a pro
temperatures = np.array([18, 25, 12, 30, 22])
hot_days = temperatures > 24
print(temperatures[hot_days]) # Output: [25 30]
# Random Number Generation - Simulate real-world data
print(np.random.rand(2, 2)) # Uniform distribution
print(np.random.randn(3)) # Normal distribution
print(np.random.randint(0, 10, (2, 3))) # Random integers
# Linear Algebra Essentials - Solve equations like a physicist
A = np.array([[3, 1], [1, 2]])
b = np.array([9, 8])
x = np.linalg.solve(A, b)
print(x) # Output: [2. 3.] (Solution to 3x+y=9 and x+2y=8)
# Matrix inverse and determinant
print(np.linalg.inv(A)) # Output: [[ 0.4 -0.2], [-0.2 0.6]]
print(np.linalg.det(A)) # Output: 5.0
# File Operations - Save/load your computational work
data = np.array([[1, 2], [3, 4]])
np.save('array.npy', data)
loaded = np.load('array.npy')
print(np.array_equal(data, loaded)) # Output: True
# Interview Power Move: Vectorization vs Loops
# 10x faster than native Python loops!
def square_sum(n):
arr = np.arange(n)
return np.sum(arr ** 2)
print(square_sum(5)) # Output: 30 (0²+1²+2²+3²+4²)
# Pro Tip: Memory-efficient data processing
# Process 1GB array without loading entire dataset
large_array = np.memmap('large_data.bin', dtype='float32', mode='r', shape=(1000000, 100))
print(large_array[0:5, 0:3]) # Process small slice
By: @DataScienceQ 🚀
#Python #NumPy #DataScience #CodingInterview #MachineLearning #ScientificComputing #DataAnalysis #Programming #TechJobs #DeveloperTips
❤6
  In Python, image processing unlocks powerful capabilities for computer vision, data augmentation, and automation—master these techniques to excel in ML engineering interviews and real-world applications! 🖼  
more explain: https://hackmd.io/@husseinsheikho/imageprocessing
#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
# PIL/Pillow Basics - The essential image library
from PIL import Image
# Open and display image
img = Image.open("input.jpg")
img.show()
# Convert formats
img.save("output.png")
img.convert("L").save("grayscale.jpg") # RGB to grayscale
# Basic transformations
img.rotate(90).save("rotated.jpg")
img.resize((300, 300)).save("resized.jpg")
img.transpose(Image.FLIP_LEFT_RIGHT).save("mirrored.jpg")
more explain: https://hackmd.io/@husseinsheikho/imageprocessing
#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
❤5👍1
  💡 NumPy Tip: Efficient Filtering with Boolean Masks
Avoid slow Python loops for filtering data. Instead, create a "mask" array of
Code explanation: A NumPy array
#Python #NumPy #DataScience #CodingTips #Programming
━━━━━━━━━━━━━━━
By: @CodeProgrammer ✨
Avoid slow Python loops for filtering data. Instead, create a "mask" array of
True/False values based on a condition. Applying this mask to your original array instantly selects only the elements where the mask is True, which is significantly faster.import numpy as np
# Create an array of data
data = np.array([10, 55, 8, 92, 43, 77, 15])
# Create a boolean mask for values greater than 50
high_values_mask = data > 50
# Use the mask to select elements
filtered_data = data[high_values_mask]
print(filtered_data)
# Output: [55 92 77]
Code explanation: A NumPy array
data is created. Then, a boolean array high_values_mask is generated, which is True for every element in data greater than 50. This mask is used as an index to efficiently extract and print only those matching elements from the original array.#Python #NumPy #DataScience #CodingTips #Programming
━━━━━━━━━━━━━━━
By: @CodeProgrammer ✨
❤2
  💡 Python F-Strings Cheatsheet
F-strings (formatted string literals) provide a concise and powerful way to embed expressions inside string literals for formatting. Just prefix the string with an
1. Basic Variable and Expression Embedding
• Place variables or expressions directly inside curly braces
2. Number Formatting
Control the appearance of numbers, such as padding with zeros or setting decimal precision.
•
•
3. Alignment and Padding
Align text within a specified width, which is useful for creating tables or neatly formatted output.
• Use
4. Date and Time Formatting
Directly format
• Use a colon
#Python #Programming #CodingTips #FStrings #PythonTips
━━━━━━━━━━━━━━━
By: @CodeProgrammer ✨
F-strings (formatted string literals) provide a concise and powerful way to embed expressions inside string literals for formatting. Just prefix the string with an
f or F.1. Basic Variable and Expression Embedding
name = "Alice"
quantity = 5
print(f"Hello, {name}. You have {quantity * 2} items in your cart.")
# Output: Hello, Alice. You have 10 items in your cart.
• Place variables or expressions directly inside curly braces
{}. Python evaluates the expression and inserts the result into the string.2. Number Formatting
Control the appearance of numbers, such as padding with zeros or setting decimal precision.
pi_value = 3.14159
order_id = 42
print(f"Pi: {pi_value:.2f}")
print(f"Order ID: {order_id:04d}")
# Output:
# Pi: 3.14
# Order ID: 0042
•
:.2f formats the float to have exactly two decimal places.•
:04d formats the integer to be at least 4 digits long, padding with leading zeros if necessary.3. Alignment and Padding
Align text within a specified width, which is useful for creating tables or neatly formatted output.
item = "Docs"
print(f"|{item:<10}|") # Left-aligned
print(f"|{item:^10}|") # Center-aligned
print(f"|{item:>10}|") # Right-aligned
# Output:
# |Docs |
# | Docs |
# | Docs|
• Use
< for left, ^ for center, and > for right alignment, followed by the total width.4. Date and Time Formatting
Directly format
datetime objects within an f-string.from datetime import datetime
now = datetime.now()
print(f"Current time: {now:%Y-%m-%d %H:%M}")
# Output: Current time: 2023-10-27 14:30
• Use a colon
: followed by standard strftime formatting codes to display dates and times as you wish.#Python #Programming #CodingTips #FStrings #PythonTips
━━━━━━━━━━━━━━━
By: @CodeProgrammer ✨
❤3🎉1
  