Python | Machine Learning | Coding | R
63.8K subscribers
1.14K photos
70 videos
144 files
794 links
Help and ads: @hussein_sheikho

Discover powerful insights with Python, Machine Learning, Coding, and Rโ€”your essential toolkit for data-driven solutions, smart alg

List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

https://telega.io/?r=nikapsOH
Download Telegram
Intent | AI-Enhanced Telegram
๐ŸŒ Supports real-time translation in 86 languages
๐Ÿ’ฌ Simply swipe up during chat to let AI automatically generate contextual replies
๐ŸŽ™ Instant AI enhanced voice-to-text conversion
๐Ÿง  Built-in mainstream models including GPT-4o, Claude 3.7, Gemini 2, Deepseek, etc., activated with one click
๐ŸŽ Currently offering generous free AI credits
๐Ÿ“ฑ Supports Android & iOS systems
๐Ÿ”Ž Website | ๐Ÿ“ฌ Download
โค5
ds full archive.pdf.pdf
55.2 MB
Best Data Science Archive Notes

โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค9๐Ÿ‘2
๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ_๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ_๐—Ÿ๐—ถ๐—ธ๐—ฒ_๐—ฎ_๐—ฃ๐—ฟ๐—ผ_โ€“_๐—”๐—น๐—น_๐—ถ๐—ป_๐—ข๐—ป๐—ฒ_๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ_๐—ณ๐—ผ๐—ฟ_๐——๐—ฎ๐˜๐—ฎ_๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐˜€.pdf
2.6 MB
๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ ๐—Ÿ๐—ถ๐—ธ๐—ฒ ๐—ฎ ๐—ฃ๐—ฟ๐—ผ โ€“ ๐—”๐—น๐—น-๐—ถ๐—ป-๐—ข๐—ป๐—ฒ ๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐˜€

If you're a data engineer, aspiring Spark developer, or someone preparing for big data interviews โ€” this one is for you.
Iโ€™m sharing a powerful, all-in-one PySpark notes sheet that covers both fundamentals and advanced techniques for real-world usage and interviews.

๐—ช๐—ต๐—ฎ๐˜'๐˜€ ๐—ถ๐—ป๐˜€๐—ถ๐—ฑ๐—ฒ? โ€ข Spark vs MapReduce
โ€ข Spark Architecture โ€“ Driver, Executors, DAG
โ€ข RDDs vs DataFrames vs Datasets
โ€ข SparkContext vs SparkSession
โ€ข Transformations: map, flatMap, reduceByKey, groupByKey
โ€ข Optimizations โ€“ caching, persisting, skew handling, salting
โ€ข Joins โ€“ Broadcast joins, Shuffle joins
โ€ข Deployment modes โ€“ Cluster vs Client
โ€ข Real interview-ready Q&A from top use cases
โ€ข CSV, JSON, Parquet, ORC โ€“ Format comparisons
โ€ข Common commands, schema creation, data filtering, null handling

๐—ช๐—ต๐—ผ ๐—ถ๐˜€ ๐˜๐—ต๐—ถ๐˜€ ๐—ณ๐—ผ๐—ฟ? Data Engineers, Spark Developers, Data Enthusiasts, and anyone preparing for interviews or working on distributed systems.

#PySpark #DataEngineering #BigData #SparkArchitecture #RDDvsDataFrame #SparkOptimization #DistributedComputing #SparkInterviewPrep #DataPipelines #ApacheSpark #MapReduce #ETL #BroadcastJoin #ClusterComputing #SparkForEngineers

โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค7๐Ÿ‘1
๐Ÿ๐Ÿ“ฐ This tutorial will give you an overview of LangGraph fundamentals through hands-on examples, and the tools needed to build your own LLM workflows and agents in LangGraph

Link: https://realpython.com/langgraph-python/

#LangGraph #Python #LLMWorkflows #AIAgents #RealPython #PythonTutorials #LargeLanguageModels #AIAgents #WorkflowAutomation #PythonForA


โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค1
A curated collection of Kaggle notebooks showcasing how to build end-to-end AI applications using Hugging Face pretrained models, covering text, speech, image, and vision-language tasks โ€” full tutorials and code available on GitHub:

1๏ธโƒฃ Text-Based Applications

1.1. Building a Chatbot Using HuggingFace Open Source Models

https://lnkd.in/dku3bigK

1.2. Building a Text Translation System using Meta NLLB Open-Source Model

https://lnkd.in/dgdjaFds

2๏ธโƒฃ Speech-Based Applications

2.1. Zero-Shot Audio Classification Using HuggingFace CLAP Open-Source Model

https://lnkd.in/dbgQgDyn

2.2. Building & Deploying a Speech Recognition System Using the Whisper Model & Gradio

https://lnkd.in/dcbp-8fN

2.3. Building Text-to-Speech Systems Using VITS & ArTST Models

https://lnkd.in/dwFcQ_X5

3๏ธโƒฃ Image-Based Applications

3.1. Step-by-Step Guide to Zero-Shot Image Classification using CLIP Model

https://lnkd.in/dnk6epGB

3.2. Building an Object Detection Assistant Application: A Step-by-Step Guide

https://lnkd.in/d573SvYV

3.3. Zero-Shot Image Segmentation using Segment Anything Model (SAM)

https://lnkd.in/dFavEdHS

3.4. Building Zero-Shot Depth Estimation Application Using DPT Model & Gradio

https://lnkd.in/d9jjJu_g

4๏ธโƒฃ Vision Language Applications

4.1. Building a Visual Question Answering System Using Hugging Face Open-Source Models

https://lnkd.in/dHNFaHFV

4.2. Building an Image Captioning System using Salesforce Blip Model

https://lnkd.in/dh36iDn9

4.3. Building an Image-to-Text Matching System Using Hugging Face Open-Source Models

https://lnkd.in/d7fsJEAF

โžก๏ธ You can find the articles and the codes for each article in this GitHub repo:

https://lnkd.in/dG5jfBwE

#HuggingFace #Kaggle #AIapplications #DeepLearning #MachineLearning #ComputerVision #NLP #SpeechRecognition #TextToSpeech #ImageProcessing #OpenSourceAI #ZeroShotLearning #Gradio

โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค13๐Ÿ’ฏ1
This channels is for Programmers, Coders, Software Engineers.

0๏ธโƒฃ Python
1๏ธโƒฃ Data Science
2๏ธโƒฃ Machine Learning
3๏ธโƒฃ Data Visualization
4๏ธโƒฃ Artificial Intelligence
5๏ธโƒฃ Data Analysis
6๏ธโƒฃ Statistics
7๏ธโƒฃ Deep Learning
8๏ธโƒฃ programming Languages

โœ… https://t.me/addlist/8_rRW2scgfRhOTc0

โœ… https://t.me/Codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค7๐ŸŽ‰1
The 2025 MIT deep learning course is excellent, covering neural networks, CNNs, RNNs, and LLMs. You build three projects for hands-on experience as part of the course. It is entirely free. Highly recommended for beginners.

Enroll Free: https://introtodeeplearning.com/

#DeepLearning #MITCourse #NeuralNetworks #CNN #RNN #LLMs #AIForBeginners #FreeCourse #MachineLearning #IntroToDeepLearning #AIProjects #LearnAI #AI2025

โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค7
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘2โค1
Top 50 LLM Interview Questions!

A comprehensive resource that covers traditional ML basics, model architectures, real-world case studies, and theoretical foundations.

๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡

โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3๐Ÿ‘3
This book covers foundational topics within computer vision, with an image processing and machine learning perspective. We want to build the readerโ€™s intuition and so we include many visualizations. The audience is undergraduate and graduate students who are entering the field, but we hope experienced practitioners will find the book valuable as well.

Our initial goal was to write a large book that provided a good coverage of the field. Unfortunately, the field of computer vision is just too large for that. So, we decided to write a small book instead, limiting each chapter to no more than five pages. Such a goal forced us to really focus on the important concepts necessary to understand each topic. Writing a short book was perfect because we did not have time to write a long book and you did not have time to read it. Unfortunately, we have failed at that goal, too.

Read it online: https://visionbook.mit.edu/

#ComputerVision #ImageProcessing #MachineLearning #CVBook #VisualLearning #AIResources #ComputerVisionBasics #MLForVision #AcademicResources #LearnComputerVision #AIIntuition #DeepLearning


โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4
Intent | AI-Enhanced Telegram
๐Ÿšจ Breaking: Telegramโ€™s translator is off-air!
๐ŸŒ Intentโ€™s rock-solid translationโ€”86 languages in real time
โฌ†๏ธ Chat swipe summons AI for seamless context replies
๐ŸŽค AI voice-to-text, lightning fast
๐Ÿค– One-click hub for GPT-4o, Claude 3.7, Gemini 2 & more
๐ŸŽ Limited-time free AI credits
๐Ÿ“ฑ Supports Android & iOS
๐Ÿ“ฎDownload
โค6
This media is not supported in your browser
VIEW IN TELEGRAM
Over the last year, several articles have been written to help candidates prepare for data science technical interviews. These resources cover a wide range of topics including machine learning, SQL, programming, statistics, and probability.

1๏ธโƒฃ Machine Learning (ML) Interview
Types of ML Q&A in Data Science Interview
https://shorturl.at/syN37

ML Interview Q&A for Data Scientists
https://shorturl.at/HVWY0

Crack the ML Coding Q&A
https://shorturl.at/CDW08

Deep Learning Interview Q&A
https://shorturl.at/lHPZ6

Top LLMs Interview Q&A
https://shorturl.at/wGRSZ

Top CV Interview Q&A [Part 1]
https://rb.gy/51jcfi

Part 2
https://rb.gy/hqgkbg

Part 3
https://rb.gy/5z87be

2๏ธโƒฃ SQL Interview Preparation
13 SQL Statements for 90% of Data Science Tasks
https://rb.gy/dkdcl1

SQL Window Functions: Simplifying Complex Queries
https://t.ly/EwSlH

Ace the SQL Questions in the Technical Interview
https://lnkd.in/gNQbYMX9

Unlocking the Power of SQL: How to Ace Top N Problem Questions
https://lnkd.in/gvxVwb9n

How To Ace the SQL Ratio Problems
https://lnkd.in/g6JQqPNA

Cracking the SQL Window Function Coding Questions
https://lnkd.in/gk5u6hnE

SQL & Database Interview Q&A
https://lnkd.in/g75DsEfw

6 Free Resources for SQL Interview Preparation
https://lnkd.in/ghhiG79Q

3๏ธโƒฃ Programming Questions
Foundations of Data Structures [Part 1]
https://lnkd.in/gX_ZcmRq

Part 2
https://lnkd.in/gATY4rTT

Top Important Python Questions [Conceptual]
https://lnkd.in/gJKaNww5

Top Important Python Questions [Data Cleaning and Preprocessing]
https://lnkd.in/g-pZBs3A

Top Important Python Questions [Machine & Deep Learning]
https://lnkd.in/gZwcceWN

Python Interview Q&A
https://lnkd.in/gcaXc_JE

5 Python Tips for Acing DS Coding Interview
https://lnkd.in/gsj_Hddd

4๏ธโƒฃ Statistics
Mastering 5 Statistics Concepts to Boost Success
https://lnkd.in/gxEuHiG5

Mastering Hypothesis Testing for Interviews
https://lnkd.in/gSBbbmF8

Introduction to A/B Testing
https://lnkd.in/g35Jihw6

Statistics Interview Q&A for Data Scientists
https://lnkd.in/geHCCt6Q

5๏ธโƒฃ Probability
15 Probability Concepts to Review [Part 1]
https://lnkd.in/g2rK2tQk

Part 2
https://lnkd.in/gQhXnKwJ

Probability Interview Q&A [Conceptual Questions]
https://lnkd.in/g5jyKqsp

Probability Interview Q&A [Mathematical Questions]
https://lnkd.in/gcWvPhVj

๐Ÿ”œ All links are available in the GitHub repository:
https://lnkd.in/djcgcKRT

#DataScience #InterviewPrep #MachineLearning #SQL #Python #Statistics #Probability #CodingInterview #AIBootcamp #DeepLearning #LLMs #ComputerVision #GitHubResources #CareerInDataScience


โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค8๐Ÿ‘2๐Ÿ’ฏ2
10 GitHub repos to build a career in AI engineering:

(100% free step-by-step roadmap)

1๏ธโƒฃ ML for Beginners by Microsoft

A 12-week project-based curriculum that teaches classical ML using Scikit-learn on real-world datasets.

Includes quizzes, lessons, and hands-on projects, with some videos.

GitHub repo โ†’ https://lnkd.in/dCxStbYv

2๏ธโƒฃ AI for Beginners by Microsoft

This repo covers neural networks, NLP, CV, transformers, ethics & more. There are hands-on labs in PyTorch & TensorFlow using Jupyter.

Beginner-friendly, project-based, and full of real-world apps.

GitHub repo โ†’ https://lnkd.in/dwS5Jk9E

3๏ธโƒฃ Neural Networks: Zero to Hero

Now that youโ€™ve grasped the foundations of AI/ML, itโ€™s time to dive deeper.

This repo by Andrej Karpathy builds modern deep learning systems from scratch, including GPTs.

GitHub repo โ†’ https://lnkd.in/dXAQWucq

4๏ธโƒฃ DL Paper Implementations

So far, you have learned the fundamentals of AI, ML, and DL. Now study how the best architectures work.

This repo covers well-documented PyTorch implementations of 60+ research papers on Transformers, GANs, Diffusion models, etc.

GitHub repo โ†’ https://lnkd.in/dTrtDrvs

5๏ธโƒฃ Made With ML

Now itโ€™s time to learn how to go from notebooks to production.

Made With ML teaches you how to design, develop, deploy, and iterate on real-world ML systems using MLOps, CI/CD, and best practices.

GitHub repo โ†’ https://lnkd.in/dYyjjBGb

6๏ธโƒฃ Hands-on LLMs

- You've built neural nets.
- You've explored GPTs and LLMs.

Now apply them. This is a visually rich repo that covers everything about LLMs, like tokenization, fine-tuning, RAG, etc.

GitHub repo โ†’ https://lnkd.in/dh2FwYFe

7๏ธโƒฃ Advanced RAG Techniques

Hands-on LLMs will give you a good grasp of RAG systems. Now learn advanced RAG techniques.

This repo covers 30+ methods to make RAG systems faster, smarter, and accurate, like HyDE, GraphRAG, etc.

GitHub repo โ†’ https://lnkd.in/dBKxtX-D

8๏ธโƒฃ AI Agents for Beginners by Microsoft

After diving into LLMs and mastering RAG, learn how to build AI agents.

This hands-on course covers building AI agents using frameworks like AutoGen.

GitHub repo โ†’ https://lnkd.in/dbFeuznE

9๏ธโƒฃ Agents Towards Production

The above course will teach what AI agents are. Next, learn how to ship them.

This is a practical playbook for building agents covering memory, orchestration, deployment, security & more.

GitHub repo โ†’ https://lnkd.in/dcwmamSb

๐Ÿ”Ÿ AI Engg. Hub

To truly master LLMs, RAG, and AI agents, you need projects.

This covers 70+ real-world examples, tutorials, and agent app you can build, adapt, and ship.

GitHub repo โ†’ https://lnkd.in/geMYm3b6

#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers


โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค11
Master MCP: The Best Free Learning Resources

1๏ธโƒฃ Everything you need to know about MCP: The first learning resource is a beginner-friendly introduction to MCP by Replit
https://lnkd.in/djVD73Gz

2๏ธโƒฃ Model Context Protocol (MCP): A Guide With Demo Project: In this blog, you will be guided through building an MCP-powered PR review server that integrates with Claude Desktop
https://lnkd.in/dXDNbAat

3๏ธโƒฃ Model Context Protocol (MCP) Hugging Face Course: This free course will take you on a journey, from beginner to informed, in understanding, using, and building applications with MCP
https://lnkd.in/dX5Ja_9m

4๏ธโƒฃ MCP: Build Rich-Context AI Apps with Anthropic: In this hands-on course, youโ€™ll learn the core concepts of MCP and how to implement it in your AI Application
https://lnkd.in/dxRyjRiW

5๏ธโƒฃ Official MCP Documents: The official MCP docs are a good resource to learn the fundamentals, a tutorial to create your first MCP server, debugging, and inspection instructions
https://lnkd.in/dqkQ6e_b

6๏ธโƒฃ Awesome MCP Servers: A curated list of awesome Model Context Protocol (MCP) servers
https://lnkd.in/d2AvkBmb

๐ŸŒŸ You can find more information about each learning resource in this article:
https://lnkd.in/dbDHJnNi

#MCP #ModelContextProtocol #AIApplications #ContextAwareAI #MCPLearning #Anthropic #HuggingFace #Replit #AIIntegration #AIFrameworks #OpenSourceAI #LearnMCP #AIEngineering #PromptEngineering #AIProtocols
โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค6
mcp guide.pdf.pdf
16.7 MB
A comprehensive PDF has been compiled that includes all MCP-related posts shared over the past six months.

(75 pages, 10+ projects & visual explainers)

Over the last half year, content has been published about the Modular Computation Protocol (MCP), which has gained significant interest and engagement from the AI community. In response to this enthusiasm, all tutorials have been gathered in one place, featuring:

* The fundamentals of MCP
* Explanations with visuals and code
* 11 hands-on projects for AI engineers

Projects included:

1. Build a 100% local MCP Client
2. MCP-powered Agentic RAG
3. MCP-powered Financial Analyst
4. MCP-powered Voice Agent
5. A Unified MCP Server
6. MCP-powered Shared Memory for Claude Desktop and Cursor
7. MCP-powered RAG over Complex Docs
8. MCP-powered Synthetic Data Generator
9. MCP-powered Deep Researcher
10. MCP-powered RAG over Videos
11. MCP-powered Audio Analysis Toolkit

#MCP #ModularComputationProtocol #AIProjects #DeepLearning #ArtificialIntelligence #RAG #VoiceAI #SyntheticData #AIAgents #AIResearch #TechWriting #OpenSourceAI #AI #python

โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค14๐Ÿ‘จโ€๐Ÿ’ป2
Auto-Encoder & Backpropagation by hand โœ๏ธ lecture video ~ ๐Ÿ“บ https://byhand.ai/cv/10

It took me a few years to invent this method to show both forward and backward passes for a non-trivial case of a multi-layer perceptron over a batch of inputs, plus gradient descents over multiple epochs, while being able to hand calculate each step and code in Excel at the same time.

= Chapters =
โ€ข Encoder & Decoder (00:00)
โ€ข Equation (10:09)
โ€ข 4-2-4 AutoEncoder (16:38)
โ€ข 6-4-2-4-6 AutoEncoder (18:39)
โ€ข L2 Loss (20:49)
โ€ข L2 Loss Gradient (27:31)
โ€ข Backpropagation (30:12)
โ€ข Implement Backpropagation (39:00)
โ€ข Gradient Descent (44:30)
โ€ข Summary (51:39)

#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers


โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5
This GitHub Repo will be very helpful if you are preparing for a data science technical interview. This question bank covers:

1๏ธโƒฃ Machine Learning Interview Questions & Answers

2๏ธโƒฃ Deep Learning Interview Questions & Answers

2.1. Deep learning basics

2.2. Deep learning for computer vision questions

2.3. Deep learning for NLP & LLMs

3๏ธโƒฃ Probability Interview Questions & Answers

4๏ธโƒฃ Statistics Interview Questions & Answers

5๏ธโƒฃ SQL Interview Questions & Answers

6๏ธโƒฃ Python Questions & Answers

โšก You can find the repo link in the comments section!
Please open Telegram to view this post
VIEW IN TELEGRAM
โค17๐Ÿ”ฅ1๐ŸŽ‰1
Please open Telegram to view this post
VIEW IN TELEGRAM
โค1