@CodeProgrammer Matplotlib.pdf
4.3 MB
The Complete Visual Guide for Data Enthusiasts
Matplotlib is a powerful Python library for data visualization, essential not only for acing job interviews but also for building a solid foundation in analytical thinking and data storytelling.
This step-by-step tutorial guide walks learners through everything from the basics to advanced techniques in Matplotlib. It also includes a curated collection of the most frequently asked Matplotlib-related interview questions, making it an ideal resource for both beginners and experienced professionals.
#Matplotlib #DataVisualization #Python #DataScience #InterviewPrep #Analytics #TechCareer #LearnToCode๏ปฟ
https://t.me/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
๐12โค2๐ฏ1
Introduction to Machine Learningโ by Alex Smola and S.V.N.
Vishwanathan is a foundational textbook that offers a comprehensive and mathematically rigorous introduction to core concepts in machine learning. The book covers key topics including supervised and unsupervised learning, kernels, graphical models, optimization techniques, and large-scale learning. It balances theory and practical application, making it ideal for graduate students, researchers, and professionals aiming to deepen their understanding of machine learning fundamentals and algorithmic principles.
PDF:
https://alex.smola.org/drafts/thebook.pdf
Vishwanathan is a foundational textbook that offers a comprehensive and mathematically rigorous introduction to core concepts in machine learning. The book covers key topics including supervised and unsupervised learning, kernels, graphical models, optimization techniques, and large-scale learning. It balances theory and practical application, making it ideal for graduate students, researchers, and professionals aiming to deepen their understanding of machine learning fundamentals and algorithmic principles.
PDF:
https://alex.smola.org/drafts/thebook.pdf
#MachineLearning #AI #DataScience #MLAlgorithms #DeepLearning #MathForML #MLTheory #MLResearch #AlexSmola #SVNVishwanathan
๐4โค1
Machine Learning Notes ๐ (1).pdf
4.9 MB
Machine Learning Notes with Real Project and Amazing discussion
https://t.me/CodeProgrammer๐
#MachineLearning #AI #DataScience #MLAlgorithms #DeepLearning
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
๐6๐ฏ4
9 machine learning concepts for ML engineers!
(explained as visually as possible)
Here's a recap of several visual summaries posted in the Daily Dose of Data Science newsletter.
1๏ธโฃ 4 strategies for Multi-GPU Training.
- Training at scale? Learn these strategies to maximize efficiency and minimize model training time.
- Read here: https://lnkd.in/gmXF_PgZ
2๏ธโฃ 4 ways to test models in production
- While testing a model in production might sound risky, ML teams do it all the time, and it isnโt that complicated.
- Implemented here: https://lnkd.in/g33mASMM
3๏ธโฃ Training & inference time complexity of 10 ML algorithms
Understanding the run time of ML algorithms is important because it helps you:
- Build a core understanding of an algorithm.
- Understand the data-specific conditions to use the algorithm
- Read here: https://lnkd.in/gKJwJ__m
4๏ธโฃ Regression & Classification Loss Functions.
- Get a quick overview of the most important loss functions and when to use them.
- Read here: https://lnkd.in/gzFPBh-H
5๏ธโฃ Transfer Learning, Fine-tuning, Multitask Learning, and Federated Learning.
- The holy grail of advanced learning paradigms, explained visually.
- Learn about them here: https://lnkd.in/g2hm8TMT
6๏ธโฃ 15 Pandas to Polars to SQL to PySpark Translations.
- The visual will help you build familiarity with four popular frameworks for data analysis and processing.
- Read here: https://lnkd.in/gP-cqjND
7๏ธโฃ 11 most important plots in data science
- A must-have visual guide to interpret and communicate your data effectively.
- Explained here: https://lnkd.in/geMt98tF
8๏ธโฃ 11 types of variables in a dataset
Understand and categorize dataset variables for better feature engineering.
- Explained here: https://lnkd.in/gQxMhb_p
9๏ธโฃ NumPy cheat sheet for data scientists
- The ultimate cheat sheet for fast, efficient numerical computing in Python.
- Read here: https://lnkd.in/gbF7cJJE
๐ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
(explained as visually as possible)
Here's a recap of several visual summaries posted in the Daily Dose of Data Science newsletter.
- Training at scale? Learn these strategies to maximize efficiency and minimize model training time.
- Read here: https://lnkd.in/gmXF_PgZ
- While testing a model in production might sound risky, ML teams do it all the time, and it isnโt that complicated.
- Implemented here: https://lnkd.in/g33mASMM
Understanding the run time of ML algorithms is important because it helps you:
- Build a core understanding of an algorithm.
- Understand the data-specific conditions to use the algorithm
- Read here: https://lnkd.in/gKJwJ__m
- Get a quick overview of the most important loss functions and when to use them.
- Read here: https://lnkd.in/gzFPBh-H
- The holy grail of advanced learning paradigms, explained visually.
- Learn about them here: https://lnkd.in/g2hm8TMT
- The visual will help you build familiarity with four popular frameworks for data analysis and processing.
- Read here: https://lnkd.in/gP-cqjND
- A must-have visual guide to interpret and communicate your data effectively.
- Explained here: https://lnkd.in/geMt98tF
Understand and categorize dataset variables for better feature engineering.
- Explained here: https://lnkd.in/gQxMhb_p
- The ultimate cheat sheet for fast, efficient numerical computing in Python.
- Read here: https://lnkd.in/gbF7cJJE
#MachineLearning #DataScience #MLEngineering #DeepLearning #AI #MLOps #BigData #Python #NumPy #Pandas #Visualization
Please open Telegram to view this post
VIEW IN TELEGRAM
โค11๐8๐ฏ1
from SQL to pandas.pdf
1.3 MB
#DataScience #SQL #pandas #InterviewPrep #Python #DataAnalysis #CareerGrowth #TechTips #Analytics
Please open Telegram to view this post
VIEW IN TELEGRAM
๐14โค1
Numpy from basics to advanced.pdf
2.4 MB
NumPy is an essential library in the world of data science, widely recognized for its efficiency in numerical computations and data manipulation. This powerful tool simplifies complex operations with arrays, offering a faster and cleaner alternative to traditional Python lists and loops.
The "Mastering NumPy" booklet provides a comprehensive walkthroughโfrom array creation and indexing to mathematical/statistical operations and advanced topics like reshaping and stacking. All concepts are illustrated with clear, beginner-friendly examples, making it ideal for anyone aiming to boost their data handling skills.
#NumPy #Python #DataScience #MachineLearning #AI #BigData #DeepLearning #DataAnalysis
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐13๐ฏ5๐4โค2๐พ1
This media is not supported in your browser
VIEW IN TELEGRAM
๐ DataCamp has officially partnered with Polars**โa cutting-edge DataFrame library designed for speed and efficiency!
To mark this exciting collaboration, **DataCamp is offering free access to its brand-new course *โIntroduction to Polarsโ* for the next 90 days. ๐
This course is a great opportunity for learners and professionals alike to master data cleaning, transformation, and analysis with Polars' high-performance engine, lazy execution, and powerful groupby operations.
Unlock the full potential of data workflows and explore how Polars can supercharge large-scale data processing.
๐ Start learning now:
https://www.datacamp.com/courses/introduction-to-polars
๐ Join the communities:
To mark this exciting collaboration, **DataCamp is offering free access to its brand-new course *โIntroduction to Polarsโ* for the next 90 days. ๐
This course is a great opportunity for learners and professionals alike to master data cleaning, transformation, and analysis with Polars' high-performance engine, lazy execution, and powerful groupby operations.
Unlock the full potential of data workflows and explore how Polars can supercharge large-scale data processing.
๐ Start learning now:
https://www.datacamp.com/courses/introduction-to-polars
#DataScience #Polars #Python #BigData #DataEngineering #MachineLearning #DataAnalytics #OpenSource #DataCamp #FreeCourse #LearnDataScience
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค8๐4๐1
python_basics.pdf
212.3 KB
I've just compiled a set of clean and powerful Python Cheat Sheets to help beginners and intermediates speed up their coding workflow.
Whether you're brushing up on the basics or diving into data science, these sheets will save you time and boost your productivity.
Python Basics
Jupyter Notebook Tips
Importing Libraries
NumPy Essentials
Pandas Overview
Perfect for students, developers, and anyone looking to keep essential Python knowledge at their fingertips.
#Python #CheatSheets #PythonTips #DataScience #JupyterNotebook #NumPy #Pandas #MachineLearning #AI #CodingTips #PythonForBeginners
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค22๐จโ๐ป4๐2๐ฅ1๐1