@CodeProgrammer Matplotlib.pdf
4.3 MB
The Complete Visual Guide for Data Enthusiasts
Matplotlib is a powerful Python library for data visualization, essential not only for acing job interviews but also for building a solid foundation in analytical thinking and data storytelling.
This step-by-step tutorial guide walks learners through everything from the basics to advanced techniques in Matplotlib. It also includes a curated collection of the most frequently asked Matplotlib-related interview questions, making it an ideal resource for both beginners and experienced professionals.
#Matplotlib #DataVisualization #Python #DataScience #InterviewPrep #Analytics #TechCareer #LearnToCodeο»Ώ
https://t.me/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
π12β€1π―1
@codeprogrammer machine learning notes.pdf
21 MB
Best Machine Learning Notes
ο»Ώ
Join to our WhatsAppπ± channel:
https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
#HuggingFace #FreeCourses #AI #MachineLearning #DeepLearning #LLM #Agents #python #PythonProgramming #ReinforcementLearning #AudioAI #ComputerVision #3DAI #DiffusionModels #OpenSourceAI
ο»Ώ
Join to our WhatsApp
https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
π10π₯1
9 machine learning concepts for ML engineers!
(explained as visually as possible)
Here's a recap of several visual summaries posted in the Daily Dose of Data Science newsletter.
1οΈβ£ 4 strategies for Multi-GPU Training.
- Training at scale? Learn these strategies to maximize efficiency and minimize model training time.
- Read here: https://lnkd.in/gmXF_PgZ
2οΈβ£ 4 ways to test models in production
- While testing a model in production might sound risky, ML teams do it all the time, and it isnβt that complicated.
- Implemented here: https://lnkd.in/g33mASMM
3οΈβ£ Training & inference time complexity of 10 ML algorithms
Understanding the run time of ML algorithms is important because it helps you:
- Build a core understanding of an algorithm.
- Understand the data-specific conditions to use the algorithm
- Read here: https://lnkd.in/gKJwJ__m
4οΈβ£ Regression & Classification Loss Functions.
- Get a quick overview of the most important loss functions and when to use them.
- Read here: https://lnkd.in/gzFPBh-H
5οΈβ£ Transfer Learning, Fine-tuning, Multitask Learning, and Federated Learning.
- The holy grail of advanced learning paradigms, explained visually.
- Learn about them here: https://lnkd.in/g2hm8TMT
6οΈβ£ 15 Pandas to Polars to SQL to PySpark Translations.
- The visual will help you build familiarity with four popular frameworks for data analysis and processing.
- Read here: https://lnkd.in/gP-cqjND
7οΈβ£ 11 most important plots in data science
- A must-have visual guide to interpret and communicate your data effectively.
- Explained here: https://lnkd.in/geMt98tF
8οΈβ£ 11 types of variables in a dataset
Understand and categorize dataset variables for better feature engineering.
- Explained here: https://lnkd.in/gQxMhb_p
9οΈβ£ NumPy cheat sheet for data scientists
- The ultimate cheat sheet for fast, efficient numerical computing in Python.
- Read here: https://lnkd.in/gbF7cJJE
π Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
π± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
(explained as visually as possible)
Here's a recap of several visual summaries posted in the Daily Dose of Data Science newsletter.
- Training at scale? Learn these strategies to maximize efficiency and minimize model training time.
- Read here: https://lnkd.in/gmXF_PgZ
- While testing a model in production might sound risky, ML teams do it all the time, and it isnβt that complicated.
- Implemented here: https://lnkd.in/g33mASMM
Understanding the run time of ML algorithms is important because it helps you:
- Build a core understanding of an algorithm.
- Understand the data-specific conditions to use the algorithm
- Read here: https://lnkd.in/gKJwJ__m
- Get a quick overview of the most important loss functions and when to use them.
- Read here: https://lnkd.in/gzFPBh-H
- The holy grail of advanced learning paradigms, explained visually.
- Learn about them here: https://lnkd.in/g2hm8TMT
- The visual will help you build familiarity with four popular frameworks for data analysis and processing.
- Read here: https://lnkd.in/gP-cqjND
- A must-have visual guide to interpret and communicate your data effectively.
- Explained here: https://lnkd.in/geMt98tF
Understand and categorize dataset variables for better feature engineering.
- Explained here: https://lnkd.in/gQxMhb_p
- The ultimate cheat sheet for fast, efficient numerical computing in Python.
- Read here: https://lnkd.in/gbF7cJJE
#MachineLearning #DataScience #MLEngineering #DeepLearning #AI #MLOps #BigData #Python #NumPy #Pandas #Visualization
Please open Telegram to view this post
VIEW IN TELEGRAM
β€10π8π―1
This media is not supported in your browser
VIEW IN TELEGRAM
A new interactive sentiment visualization project has been developed, featuring a dynamic smiley face that reflects sentiment analysis results in real time. Using a natural language processing model, the system evaluates input text and adjusts the smiley face expression accordingly:
π Positive sentiment
βΉοΈ Negative sentiment
The visualization offers an intuitive and engaging way to observe sentiment dynamics as they happen.
π GitHub: https://lnkd.in/e_gk3hfe
π° Article: https://lnkd.in/e_baNJd2
#AI #SentimentAnalysis #DataVisualization #InteractiveDesign #NLP #MachineLearning #Python #GitHubProjects #TowardsDataScience
π Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
π± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
The visualization offers an intuitive and engaging way to observe sentiment dynamics as they happen.
#AI #SentimentAnalysis #DataVisualization #InteractiveDesign #NLP #MachineLearning #Python #GitHubProjects #TowardsDataScience
Please open Telegram to view this post
VIEW IN TELEGRAM
π7π3
Python Cheat Sheet
β‘οΈ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
π± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
#AI #SentimentAnalysis #DataVisualization #pandas #Numpy #InteractiveDesign #NLP #MachineLearning #Python #GitHubProjects #TowardsDataScience
Please open Telegram to view this post
VIEW IN TELEGRAM
π4β€2
from SQL to pandas.pdf
1.3 MB
#DataScience #SQL #pandas #InterviewPrep #Python #DataAnalysis #CareerGrowth #TechTips #Analytics
Please open Telegram to view this post
VIEW IN TELEGRAM
π13