🤖🧠 MiniMax-M2: The Open-Source Revolution Powering Coding and Agentic Intelligence
🗓️ 30 Oct 2025
📚 AI News & Trends
Artificial intelligence is evolving faster than ever, but not every innovation needs to be enormous to make an impact. MiniMax-M2, the latest release from MiniMax-AI, demonstrates that efficiency and power can coexist within a streamlined framework. MiniMax-M2 is an open-source Mixture of Experts (MoE) model designed for coding tasks, multi-agent collaboration and automation workflows. With ...
#MiniMaxM2 #OpenSource #MachineLearning #CodingAI #AgenticIntelligence #MixtureOfExperts
🗓️ 30 Oct 2025
📚 AI News & Trends
Artificial intelligence is evolving faster than ever, but not every innovation needs to be enormous to make an impact. MiniMax-M2, the latest release from MiniMax-AI, demonstrates that efficiency and power can coexist within a streamlined framework. MiniMax-M2 is an open-source Mixture of Experts (MoE) model designed for coding tasks, multi-agent collaboration and automation workflows. With ...
#MiniMaxM2 #OpenSource #MachineLearning #CodingAI #AgenticIntelligence #MixtureOfExperts
❤1👍1🔥1
💡 Keras: Building Neural Networks Simply
Keras is a high-level deep learning API, now part of TensorFlow, designed for fast and easy experimentation. This guide covers the fundamental workflow: defining, compiling, training, and using a neural network model.
• Model Definition:
•
•
• Compilation:
•
•
•
• Training: The
•
•
•
• Prediction:
• For a classification model with a softmax output, this returns an array of probabilities for each class.
•
#Keras #TensorFlow #DeepLearning #MachineLearning #Python
━━━━━━━━━━━━━━━
By: @CodeProgrammer ✨
Keras is a high-level deep learning API, now part of TensorFlow, designed for fast and easy experimentation. This guide covers the fundamental workflow: defining, compiling, training, and using a neural network model.
from tensorflow import keras
from tensorflow.keras import layers
# Define a Sequential model
model = keras.Sequential([
# Input layer with 64 neurons, expecting flat input data
layers.Dense(64, activation="relu", input_shape=(784,)),
# A hidden layer with 32 neurons
layers.Dense(32, activation="relu"),
# Output layer with 10 neurons for 10-class classification
layers.Dense(10, activation="softmax")
])
model.summary()
• Model Definition:
keras.Sequential creates a simple, layer-by-layer model.•
layers.Dense is a standard fully-connected layer. The first layer must specify the input_shape.•
activation functions like "relu" introduce non-linearity, while "softmax" is used on the output layer for multi-class classification to produce probabilities.# (Continuing from the previous step)
model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
print("Model compiled successfully.")
• Compilation:
.compile() configures the model for training.•
optimizer is the algorithm used to update the model's weights (e.g., 'adam' is a popular choice).•
loss is the function the model tries to minimize during training. sparse_categorical_crossentropy is common for integer-based classification labels.•
metrics are used to monitor the training and testing steps. Here, we track accuracy.import numpy as np
# Create dummy training data
x_train = np.random.random((1000, 784))
y_train = np.random.randint(10, size=(1000,))
# Train the model
history = model.fit(
x_train,
y_train,
epochs=5,
batch_size=32,
verbose=0 # Hides the progress bar for a cleaner output
)
print(f"Training complete. Final accuracy: {history.history['accuracy'][-1]:.4f}")
# Output (will vary):
# Training complete. Final accuracy: 0.4570
• Training: The
.fit() method trains the model on your data.•
x_train and y_train are your input features and target labels.•
epochs defines how many times the model will see the entire dataset.•
batch_size is the number of samples processed before the model is updated.# Create a single dummy sample to test
x_test = np.random.random((1, 784))
# Get the model's prediction
predictions = model.predict(x_test)
predicted_class = np.argmax(predictions[0])
print(f"Predicted class: {predicted_class}")
print(f"Confidence scores: {predictions[0].round(2)}")
# Output (will vary):
# Predicted class: 3
# Confidence scores: [0.09 0.1 0.1 0.12 0.1 0.09 0.11 0.1 0.09 0.1 ]
• Prediction:
.predict() is used to make predictions on new, unseen data.• For a classification model with a softmax output, this returns an array of probabilities for each class.
•
np.argmax() is used to find the index (the class) with the highest probability score.#Keras #TensorFlow #DeepLearning #MachineLearning #Python
━━━━━━━━━━━━━━━
By: @CodeProgrammer ✨
🔥3❤2