Forwarded from Python Data Science Jobs & Interviews
In Python, NumPy is the cornerstone of scientific computing, offering high-performance multidimensional arrays and tools for working with them—critical for data science interviews and real-world applications! 📊
By: @DataScienceQ 🚀
#Python #NumPy #DataScience #CodingInterview #MachineLearning #ScientificComputing #DataAnalysis #Programming #TechJobs #DeveloperTips
import numpy as np
# Array Creation - The foundation of NumPy
arr = np.array([1, 2, 3])
zeros = np.zeros((2, 3)) # 2x3 matrix of zeros
ones = np.ones((2, 2), dtype=int) # Integer matrix
arange = np.arange(0, 10, 2) # [0 2 4 6 8]
linspace = np.linspace(0, 1, 5) # [0. 0.25 0.5 0.75 1. ]
print(linspace)
# Array Attributes - Master your data's structure
matrix = np.array([[1, 2, 3], [4, 5, 6]])
print(matrix.shape) # Output: (2, 3)
print(matrix.ndim) # Output: 2
print(matrix.dtype) # Output: int64
print(matrix.size) # Output: 6
# Indexing & Slicing - Precision data access
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(data[1, 2]) # Output: 6 (row 1, col 2)
print(data[0:2, 1:3]) # Output: [[2 3], [5 6]]
print(data[:, -1]) # Output: [3 6 9] (last column)
# Reshaping Arrays - Transform dimensions effortlessly
flat = np.arange(6)
reshaped = flat.reshape(2, 3)
raveled = reshaped.ravel()
print(reshaped)
# Output: [[0 1 2], [3 4 5]]
print(raveled) # Output: [0 1 2 3 4 5]
# Stacking Arrays - Combine datasets vertically/horizontally
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
print(np.vstack((a, b))) # Vertical stack
# Output: [[1 2 3], [4 5 6]]
print(np.hstack((a, b))) # Horizontal stack
# Output: [1 2 3 4 5 6]
# Mathematical Operations - Vectorized calculations
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])
print(x + y) # Output: [5 7 9]
print(x * 2) # Output: [2 4 6]
print(np.dot(x, y)) # Output: 32 (1*4 + 2*5 + 3*6)
# Broadcasting Magic - Operate on mismatched shapes
matrix = np.array([[1, 2, 3], [4, 5, 6]])
scalar = 10
print(matrix + scalar)
# Output: [[11 12 13], [14 15 16]]
# Aggregation Functions - Statistical power in one line
values = np.array([1, 5, 3, 9, 7])
print(np.sum(values)) # Output: 25
print(np.mean(values)) # Output: 5.0
print(np.max(values)) # Output: 9
print(np.std(values)) # Output: 2.8284271247461903
# Boolean Masking - Filter data like a pro
temperatures = np.array([18, 25, 12, 30, 22])
hot_days = temperatures > 24
print(temperatures[hot_days]) # Output: [25 30]
# Random Number Generation - Simulate real-world data
print(np.random.rand(2, 2)) # Uniform distribution
print(np.random.randn(3)) # Normal distribution
print(np.random.randint(0, 10, (2, 3))) # Random integers
# Linear Algebra Essentials - Solve equations like a physicist
A = np.array([[3, 1], [1, 2]])
b = np.array([9, 8])
x = np.linalg.solve(A, b)
print(x) # Output: [2. 3.] (Solution to 3x+y=9 and x+2y=8)
# Matrix inverse and determinant
print(np.linalg.inv(A)) # Output: [[ 0.4 -0.2], [-0.2 0.6]]
print(np.linalg.det(A)) # Output: 5.0
# File Operations - Save/load your computational work
data = np.array([[1, 2], [3, 4]])
np.save('array.npy', data)
loaded = np.load('array.npy')
print(np.array_equal(data, loaded)) # Output: True
# Interview Power Move: Vectorization vs Loops
# 10x faster than native Python loops!
def square_sum(n):
arr = np.arange(n)
return np.sum(arr ** 2)
print(square_sum(5)) # Output: 30 (0²+1²+2²+3²+4²)
# Pro Tip: Memory-efficient data processing
# Process 1GB array without loading entire dataset
large_array = np.memmap('large_data.bin', dtype='float32', mode='r', shape=(1000000, 100))
print(large_array[0:5, 0:3]) # Process small slice
By: @DataScienceQ 🚀
#Python #NumPy #DataScience #CodingInterview #MachineLearning #ScientificComputing #DataAnalysis #Programming #TechJobs #DeveloperTips
❤4
👨🏻💻 This map is designed like a metro map that starts from basic concepts and goes through machine learning, big data, and data visualization.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5
👩🏻💻 These top-notch resources can take your #Python skills several levels higher. The best part is that they are all completely free!
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5
🤖🧠 Qwen3-VL-8B-Instruct — The Next Generation of Vision-Language Intelligence by Qwen
🗓️ 27 Oct 2025
📚 AI News & Trends
In the rapidly evolving landscape of multimodal AI, Qwen3-VL-8B-Instruct stands out as a groundbreaking leap forward. Developed by Qwen, this model represents the most advanced vision-language (VL) system in the Qwen series to date. As artificial intelligence continues to bridge the gap between text and vision, Qwen3-VL-8B-Instruct emerges as a powerful engine capable of comprehending ...
#Qwen3VL #VisionLanguageAI #MultimodalAI #AISystems #QwenSeries #NextGenAI
🗓️ 27 Oct 2025
📚 AI News & Trends
In the rapidly evolving landscape of multimodal AI, Qwen3-VL-8B-Instruct stands out as a groundbreaking leap forward. Developed by Qwen, this model represents the most advanced vision-language (VL) system in the Qwen series to date. As artificial intelligence continues to bridge the gap between text and vision, Qwen3-VL-8B-Instruct emerges as a powerful engine capable of comprehending ...
#Qwen3VL #VisionLanguageAI #MultimodalAI #AISystems #QwenSeries #NextGenAI
🤖🧠 LangExtract by Google: Transforming Unstructured Text into Structured Data with LLM Precision
🗓️ 27 Oct 2025
📚 AI News & Trends
In the world of data-driven decision-making, one of the biggest challenges lies in extracting meaningful insights from unstructured text — documents, reports, emails or articles that lack consistent structure. Manually organizing this information is both time-consuming and prone to errors. Enter LangExtract, an advanced Python library by Google that leverages Large Language Models (LLMs) like ...
#LangExtract #LLM #StructuredData #UnstructuredText #PythonLibrary #GoogleAI
🗓️ 27 Oct 2025
📚 AI News & Trends
In the world of data-driven decision-making, one of the biggest challenges lies in extracting meaningful insights from unstructured text — documents, reports, emails or articles that lack consistent structure. Manually organizing this information is both time-consuming and prone to errors. Enter LangExtract, an advanced Python library by Google that leverages Large Language Models (LLMs) like ...
#LangExtract #LLM #StructuredData #UnstructuredText #PythonLibrary #GoogleAI
Forwarded from ️Crypto Rates, Prices and news
Check the Risk Before You Send Crypto
Run a real-time risk check on any wallet and get an AML-grade security report in minutes. Spot suspicious activity before you send. Supports major chains (BTC, ETH, SOL, BNB and more).
Sponsored By WaybienAds
Run a real-time risk check on any wallet and get an AML-grade security report in minutes. Spot suspicious activity before you send. Supports major chains (BTC, ETH, SOL, BNB and more).
Sponsored By WaybienAds
🤖🧠 AI Projects : A Comprehensive Showcase of Machine Learning, Deep Learning and Generative AI
🗓️ 27 Oct 2025
📚 AI News & Trends
Artificial Intelligence (AI) is transforming industries across the globe, driving innovation through automation, data-driven insights and intelligent decision-making. Whether it’s predicting house prices, detecting diseases or building conversational chatbots, AI is at the core of modern digital solutions. The AI Project Gallery by Hema Kalyan Murapaka is an exceptional GitHub repository that curates a wide ...
#AI #MachineLearning #DeepLearning #GenerativeAI #ArtificialIntelligence #GitHub
🗓️ 27 Oct 2025
📚 AI News & Trends
Artificial Intelligence (AI) is transforming industries across the globe, driving innovation through automation, data-driven insights and intelligent decision-making. Whether it’s predicting house prices, detecting diseases or building conversational chatbots, AI is at the core of modern digital solutions. The AI Project Gallery by Hema Kalyan Murapaka is an exceptional GitHub repository that curates a wide ...
#AI #MachineLearning #DeepLearning #GenerativeAI #ArtificialIntelligence #GitHub
❤1