Python | Machine Learning | Coding | R
67.2K subscribers
1.25K photos
89 videos
153 files
903 links
Help and ads: @hussein_sheikho

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

https://telega.io/?r=nikapsOH
Download Telegram
🤖🧠 Master Machine Learning: Explore the Ultimate “Machine-Learning-Tutorials” Repository

🗓️ 23 Oct 2025
📚 AI News & Trends

In today’s data-driven world, Machine Learning (ML) has become the cornerstone of modern technology from intelligent chatbots to predictive analytics and recommendation systems. However, mastering ML isn’t just about coding, it requires a structured understanding of algorithms, statistics, optimization techniques and real-world problem-solving. That’s where Ujjwal Karn’s Machine-Learning-Tutorials GitHub repository stands out. This open-source, topic-wise ...

#MachineLearning #MLTutorials #ArtificialIntelligence #DataScience #OpenSource #AIEducation
5👍1
In Python, NumPy is the cornerstone of scientific computing, offering high-performance multidimensional arrays and tools for working with them—critical for data science interviews and real-world applications! 📊

import numpy as np

# Array Creation - The foundation of NumPy
arr = np.array([1, 2, 3])
zeros = np.zeros((2, 3)) # 2x3 matrix of zeros
ones = np.ones((2, 2), dtype=int) # Integer matrix
arange = np.arange(0, 10, 2) # [0 2 4 6 8]
linspace = np.linspace(0, 1, 5) # [0. 0.25 0.5 0.75 1. ]
print(linspace)


# Array Attributes - Master your data's structure
matrix = np.array([[1, 2, 3], [4, 5, 6]])
print(matrix.shape) # Output: (2, 3)
print(matrix.ndim) # Output: 2
print(matrix.dtype) # Output: int64
print(matrix.size) # Output: 6


# Indexing & Slicing - Precision data access
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(data[1, 2]) # Output: 6 (row 1, col 2)
print(data[0:2, 1:3]) # Output: [[2 3], [5 6]]
print(data[:, -1]) # Output: [3 6 9] (last column)


# Reshaping Arrays - Transform dimensions effortlessly
flat = np.arange(6)
reshaped = flat.reshape(2, 3)
raveled = reshaped.ravel()
print(reshaped)
# Output: [[0 1 2], [3 4 5]]
print(raveled) # Output: [0 1 2 3 4 5]


# Stacking Arrays - Combine datasets vertically/horizontally
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
print(np.vstack((a, b))) # Vertical stack
# Output: [[1 2 3], [4 5 6]]
print(np.hstack((a, b))) # Horizontal stack
# Output: [1 2 3 4 5 6]


# Mathematical Operations - Vectorized calculations
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])
print(x + y) # Output: [5 7 9]
print(x * 2) # Output: [2 4 6]
print(np.dot(x, y)) # Output: 32 (1*4 + 2*5 + 3*6)


# Broadcasting Magic - Operate on mismatched shapes
matrix = np.array([[1, 2, 3], [4, 5, 6]])
scalar = 10
print(matrix + scalar)
# Output: [[11 12 13], [14 15 16]]


# Aggregation Functions - Statistical power in one line
values = np.array([1, 5, 3, 9, 7])
print(np.sum(values)) # Output: 25
print(np.mean(values)) # Output: 5.0
print(np.max(values)) # Output: 9
print(np.std(values)) # Output: 2.8284271247461903


# Boolean Masking - Filter data like a pro
temperatures = np.array([18, 25, 12, 30, 22])
hot_days = temperatures > 24
print(temperatures[hot_days]) # Output: [25 30]


# Random Number Generation - Simulate real-world data
print(np.random.rand(2, 2)) # Uniform distribution
print(np.random.randn(3)) # Normal distribution
print(np.random.randint(0, 10, (2, 3))) # Random integers


# Linear Algebra Essentials - Solve equations like a physicist
A = np.array([[3, 1], [1, 2]])
b = np.array([9, 8])
x = np.linalg.solve(A, b)
print(x) # Output: [2. 3.] (Solution to 3x+y=9 and x+2y=8)

# Matrix inverse and determinant
print(np.linalg.inv(A)) # Output: [[ 0.4 -0.2], [-0.2 0.6]]
print(np.linalg.det(A)) # Output: 5.0


# File Operations - Save/load your computational work
data = np.array([[1, 2], [3, 4]])
np.save('array.npy', data)
loaded = np.load('array.npy')
print(np.array_equal(data, loaded)) # Output: True


# Interview Power Move: Vectorization vs Loops
# 10x faster than native Python loops!
def square_sum(n):
arr = np.arange(n)
return np.sum(arr ** 2)

print(square_sum(5)) # Output: 30 (0²+1²+2²+3²+4²)


# Pro Tip: Memory-efficient data processing
# Process 1GB array without loading entire dataset
large_array = np.memmap('large_data.bin', dtype='float32', mode='r', shape=(1000000, 100))
print(large_array[0:5, 0:3]) # Process small slice


By: @DataScienceQ 🚀

#Python #NumPy #DataScience #CodingInterview #MachineLearning #ScientificComputing #DataAnalysis #Programming #TechJobs #DeveloperTips
5
🐍 10 Free Courses to Learn Python

👩🏻‍💻 These top-notch resources can take your #Python skills several levels higher. The best part is that they are all completely free!


1⃣ Comprehensive Python Course for Beginners

📃A complete video course that teaches Python from basic to advanced with clear and organized explanations.


2⃣ Intensive Python Training

📃A 4-hour intensive course, fast, focused, and to the point.


3⃣ Comprehensive Python Course

📃Training with lots of real examples and exercises.


4⃣ Introduction to Python

📃Learn the fundamentals with a focus on logic, clean coding, and solving real problems.


5⃣ Automate Daily Tasks with Python

📃Learn how to automate your daily project tasks with Python.


6⃣ Learn Python with Interactive Practice

📃Interactive lessons with real data and practical exercises.


7⃣ Scientific Computing with Python

📃Project-based, for those who want to work with data and scientific analysis.


8⃣ Step-by-Step Python Training

📃Step-by-step and short training for beginners with interactive exercises.


9⃣ Google's Python Class

📃A course by Google engineers with real exercises and professional tips.


1⃣ Introduction to Programming with Python

📃University-level content for conceptual learning and problem-solving with exercises and projects.

🌐 #DataScience #DataScience

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
10
In Python, image processing unlocks powerful capabilities for computer vision, data augmentation, and automation—master these techniques to excel in ML engineering interviews and real-world applications! 🖼 

# PIL/Pillow Basics - The essential image library
from PIL import Image

# Open and display image
img = Image.open("input.jpg")
img.show()

# Convert formats
img.save("output.png")
img.convert("L").save("grayscale.jpg")  # RGB to grayscale

# Basic transformations
img.rotate(90).save("rotated.jpg")
img.resize((300, 300)).save("resized.jpg")
img.transpose(Image.FLIP_LEFT_RIGHT).save("mirrored.jpg")


more explain: https://hackmd.io/@husseinsheikho/imageprocessing

#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
5👍1