Tired of endless job boards and low offers?
Unlock access to exclusive remote jobs from top startups—some with salaries $100k+ and early-bird roles at $50/h and above.
New high-paying openings posted daily—tech, marketing, design, and more.
Ready to upgrade your career from anywhere?
Check today’s top jobs now before they’re gone!
#إعلان InsideAds
Unlock access to exclusive remote jobs from top startups—some with salaries $100k+ and early-bird roles at $50/h and above.
New high-paying openings posted daily—tech, marketing, design, and more.
Ready to upgrade your career from anywhere?
Check today’s top jobs now before they’re gone!
#إعلان InsideAds
𝗗𝗲𝗲𝗽 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 skills.pdf
14.5 MB
Deep Learning roadmap. Now it’s your turn!
𝗣𝗵𝗮𝘀𝗲 𝟭: 𝗡𝗲𝘂𝗿𝗮𝗹 𝗡𝗲𝘁𝘄𝗼𝗿𝗸 𝗙𝗼𝘂𝗻𝗱𝗮𝘁𝗶𝗼𝗻𝘀 (𝗪𝗲𝗲𝗸 𝟭-𝟮)
● Understand perceptrons, sigmoid, ReLU, tanh
● Learn cost functions, gradient descent, and derivatives
● Implement binary logistic regression using NumPy
𝗣𝗵𝗮𝘀𝗲 𝟮: 𝗦𝗵𝗮𝗹𝗹𝗼𝘄 𝗡𝗲𝘂𝗿𝗮𝗹 𝗡𝗲𝘁𝘄𝗼𝗿𝗸𝘀 (𝗪𝗲𝗲𝗸 𝟯-𝟰)
● Build a neural net with one hidden layer
● Compare activation functions (sigmoid vs tanh vs ReLU)
● Train your model to classify simple images
𝗣𝗵𝗮𝘀𝗲 𝟯: 𝗗𝗲𝗲𝗽 𝗡𝗲𝘂𝗿𝗮𝗹 𝗡𝗲𝘁𝘄𝗼𝗿𝗸𝘀 (𝗪𝗲𝗲𝗸 𝟱-𝟲)
● Forward and backward propagation through multiple layers
● Parameter initialization and tuning
● Implement L-layer neural networks from scratch
𝗣𝗵𝗮𝘀𝗲 𝟰: 𝗢𝗽𝘁𝗶𝗺𝗶𝘇𝗮𝘁𝗶𝗼𝗻 & 𝗥𝗲𝗴𝘂𝗹𝗮𝗿𝗶𝘇𝗮𝘁𝗶𝗼𝗻 (𝗪𝗲𝗲𝗸 𝟳-𝟴)
● Learn mini-batch gradient descent, RMSProp, and Adam
● Apply L2 and Dropout regularization to avoid overfitting
● Boost your model’s performance with better convergence
𝗣𝗵𝗮𝘀𝗲 𝟱: 𝗧𝗲𝗻𝘀𝗼𝗿𝗙𝗹𝗼𝘄 & 𝗥𝗲𝗮𝗹 𝗣𝗿𝗼𝗷𝗲𝗰𝘁𝘀 (𝗪𝗲𝗲𝗸 𝟵-𝟭𝟬)
● Build models using TensorFlow and Keras
● Normalize data, tune hyperparameters, and visualize metrics
● Create multi-class classifiers using softmax
𝗣𝗵𝗮𝘀𝗲 𝟲: 𝗥𝗲𝗮𝗹-𝗪𝗼𝗿𝗹𝗱 𝗣𝗿𝗼𝗷𝗲𝗰𝘁𝘀 & 𝗖𝗮𝗿𝗲𝗲𝗿 𝗣𝗿𝗲𝗽 (𝗪𝗲𝗲𝗸 𝟭𝟭-𝟭𝟮)
● Work on image recognition, text classification, and real datasets
● Learn model deployment techniques
● Prepare for interviews with hands-on projects and GitHub repo
https://t.me/CodeProgrammer✉️
𝗣𝗵𝗮𝘀𝗲 𝟭: 𝗡𝗲𝘂𝗿𝗮𝗹 𝗡𝗲𝘁𝘄𝗼𝗿𝗸 𝗙𝗼𝘂𝗻𝗱𝗮𝘁𝗶𝗼𝗻𝘀 (𝗪𝗲𝗲𝗸 𝟭-𝟮)
● Understand perceptrons, sigmoid, ReLU, tanh
● Learn cost functions, gradient descent, and derivatives
● Implement binary logistic regression using NumPy
𝗣𝗵𝗮𝘀𝗲 𝟮: 𝗦𝗵𝗮𝗹𝗹𝗼𝘄 𝗡𝗲𝘂𝗿𝗮𝗹 𝗡𝗲𝘁𝘄𝗼𝗿𝗸𝘀 (𝗪𝗲𝗲𝗸 𝟯-𝟰)
● Build a neural net with one hidden layer
● Compare activation functions (sigmoid vs tanh vs ReLU)
● Train your model to classify simple images
𝗣𝗵𝗮𝘀𝗲 𝟯: 𝗗𝗲𝗲𝗽 𝗡𝗲𝘂𝗿𝗮𝗹 𝗡𝗲𝘁𝘄𝗼𝗿𝗸𝘀 (𝗪𝗲𝗲𝗸 𝟱-𝟲)
● Forward and backward propagation through multiple layers
● Parameter initialization and tuning
● Implement L-layer neural networks from scratch
𝗣𝗵𝗮𝘀𝗲 𝟰: 𝗢𝗽𝘁𝗶𝗺𝗶𝘇𝗮𝘁𝗶𝗼𝗻 & 𝗥𝗲𝗴𝘂𝗹𝗮𝗿𝗶𝘇𝗮𝘁𝗶𝗼𝗻 (𝗪𝗲𝗲𝗸 𝟳-𝟴)
● Learn mini-batch gradient descent, RMSProp, and Adam
● Apply L2 and Dropout regularization to avoid overfitting
● Boost your model’s performance with better convergence
𝗣𝗵𝗮𝘀𝗲 𝟱: 𝗧𝗲𝗻𝘀𝗼𝗿𝗙𝗹𝗼𝘄 & 𝗥𝗲𝗮𝗹 𝗣𝗿𝗼𝗷𝗲𝗰𝘁𝘀 (𝗪𝗲𝗲𝗸 𝟵-𝟭𝟬)
● Build models using TensorFlow and Keras
● Normalize data, tune hyperparameters, and visualize metrics
● Create multi-class classifiers using softmax
𝗣𝗵𝗮𝘀𝗲 𝟲: 𝗥𝗲𝗮𝗹-𝗪𝗼𝗿𝗹𝗱 𝗣𝗿𝗼𝗷𝗲𝗰𝘁𝘀 & 𝗖𝗮𝗿𝗲𝗲𝗿 𝗣𝗿𝗲𝗽 (𝗪𝗲𝗲𝗸 𝟭𝟭-𝟭𝟮)
● Work on image recognition, text classification, and real datasets
● Learn model deployment techniques
● Prepare for interviews with hands-on projects and GitHub repo
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9
https://t.me/InsideAds_bot/open?startapp=r_148350890_utm_source-insideadsInternal-utm_medium-notification-utm_campaign-referralRegistered
if you have channel , make money by using this ads paltform
easy and auto ads posting ( profit: 100$ monthly per channel)
if you have channel , make money by using this ads paltform
easy and auto ads posting ( profit: 100$ monthly per channel)
Telegram
Inside Ads
Smart tool for growth and monetisation of Telegram channels.
Attract subscribers and earn money on your channel (from 100 subscribers). AI will select platforms, advertisers and create ads automatically
Attract subscribers and earn money on your channel (from 100 subscribers). AI will select platforms, advertisers and create ads automatically
🎉1
🚀 Model Context Protocol (MCP) Curriculum for Beginners
Learn MCP with Hands-on Code Examples in C#, Java, JavaScript, Python, and TypeScript
🧠 Overview of the Model Context Protocol Curriculum
The Model Context Protocol (MCP) is an innovative framework designed to standardize communication between AI models and client applications. This open-source curriculum provides a structured learning path, featuring practical coding examples and real-world scenarios across popular programming languages such as C#, Java, JavaScript, TypeScript, and Python.
Whether you're an AI developer, system architect, or software engineer, this guide is your all-in-one resource for mastering MCP fundamentals and implementation techniques.
Resources: https://github.com/microsoft/mcp-for-beginners/blob/main/translations/en/README.md
https://t.me/CodeProgrammer⭐️
Learn MCP with Hands-on Code Examples in C#, Java, JavaScript, Python, and TypeScript
🧠 Overview of the Model Context Protocol Curriculum
The Model Context Protocol (MCP) is an innovative framework designed to standardize communication between AI models and client applications. This open-source curriculum provides a structured learning path, featuring practical coding examples and real-world scenarios across popular programming languages such as C#, Java, JavaScript, TypeScript, and Python.
Whether you're an AI developer, system architect, or software engineer, this guide is your all-in-one resource for mastering MCP fundamentals and implementation techniques.
Resources: https://github.com/microsoft/mcp-for-beginners/blob/main/translations/en/README.md
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2🎉1
Join our paid channel, content and rare resources for learning, mastering artificial intelligence, data analysis, Python and other resources that you will only find in our channels
https://t.me/+r_Tcx2c-oVU1OWNi
this link for only 7 members
https://t.me/+r_Tcx2c-oVU1OWNi
this link for only 7 members
Telegram
Data Science Premium (Books & Courses)
access to thousands of valuable resources, including essential books and courses.
Paid books
Paid courses from coursera and Udemy
Paid project
Paid books
Paid courses from coursera and Udemy
Paid project
❤2
This media is not supported in your browser
VIEW IN TELEGRAM
LangExtract
A Python library for extracting structured information from unstructured text using LLMs with precise source grounding and interactive visualization.
GitHub: https://github.com/google/langextract
https://t.me/DataScienceN🖕
A Python library for extracting structured information from unstructured text using LLMs with precise source grounding and interactive visualization.
GitHub: https://github.com/google/langextract
https://t.me/DataScienceN
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1