Python | Machine Learning | Coding | R
63.9K subscribers
1.14K photos
71 videos
144 files
804 links
Help and ads: @hussein_sheikho

Discover powerful insights with Python, Machine Learning, Coding, and Rโ€”your essential toolkit for data-driven solutions, smart alg

List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

https://telega.io/?r=nikapsOH
Download Telegram
๐Ÿ”ฅ Master Vision Transformers with 65+ MCQs! ๐Ÿ”ฅ

Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?

๐Ÿง  Dive into 65+ curated Multiple Choice Questions covering the fundamentals, architecture, training, and applications of ViT โ€” all with answers!

๐ŸŒ Explore Now: https://hackmd.io/@husseinsheikho/vit-mcq

๐Ÿ”น Table of Contents
Basic Concepts (Q1โ€“Q15)
Architecture & Components (Q16โ€“Q30)
Attention & Transformers (Q31โ€“Q45)
Training & Optimization (Q46โ€“Q55)
Advanced & Real-World Applications (Q56โ€“Q65)
Answer Key & Explanations

#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #MCQ #InterviewPrep


โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4
This media is not supported in your browser
VIEW IN TELEGRAM
๐Ÿงน ObjectClear โ€” an AI-powered tool for removing objects from images effortlessly.

โš™๏ธ What It Can Do:

๐Ÿ–ผ๏ธ Upload any image
๐ŸŽฏ Select the object you want to remove
๐ŸŒŸ The model automatically erases the object and intelligently reconstructs the background

โšก๏ธ Under the Hood:

โ€” Uses Segment Anything (SAM) by Meta for object segmentation
โ€” Leverages Inpaint-Anything for realistic background generation
โ€” Works in your browser with an intuitive Gradio UI

โœ”๏ธ Fully open-source and can be run locally.

๐Ÿ“Ž GitHub: https://github.com/zjx0101/ObjectClear

#AI #ImageEditing #ComputerVision #Gradio #OpenSource #Python


โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค7
๐Ÿš€ Comprehensive Guide: How to Prepare for an Image Processing Job Interview โ€“ 500 Most Common Interview Questions

Let's start: https://hackmd.io/@husseinsheikho/IP

#ImageProcessing #ComputerVision #OpenCV #Python #InterviewPrep #DigitalImageProcessing #MachineLearning #AI #SignalProcessing #ComputerGraphics

โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3๐Ÿ”ฅ1
๐Ÿš€ Comprehensive Guide: How to Prepare for a Graph Neural Networks (GNN) Job Interview โ€“ 350 Most Common Interview Questions

Read: https://hackmd.io/@husseinsheikho/GNN-interview

#GNN #GraphNeuralNetworks #MachineLearning #DeepLearning #AI #DataScience #PyTorchGeometric #DGL #NodeClassification #LinkPrediction #GraphML

โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
โค5
This media is not supported in your browser
VIEW IN TELEGRAM
๐Ÿฅ‡ This repo is like gold for every data scientist!

โœ… Just open your browser; a ton of interactive exercises and real experiences await you. Any question about statistics, probability, Python, or machine learning, you'll get the answer right there! With code, charts, even animations. This way, you don't waste time, and what you learn really sticks in your mind!

โฌ…๏ธ Data science statistics and probability topics
โฌ…๏ธ Clustering
โฌ…๏ธ Principal Component Analysis (PCA)
โฌ…๏ธ Bagging and Boosting techniques
โฌ…๏ธ Linear regression
โฌ…๏ธ Neural networks and more...


โ”Œ ๐Ÿ“‚ Int Data Science Python Dash
โ””
๐Ÿฑ GitHub-Repos

๐Ÿ‘‰ @codeprogrammer

#Python #OpenCV #Automation #ML #AI #DEEPLEARNING #MACHINELEARNING #ComputerVision
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3๐Ÿ‘2๐Ÿ’ฏ1