Python | Machine Learning | Coding | R
62.7K subscribers
1.13K photos
68 videos
143 files
789 links
List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

Help and ads: @hussein_sheikho

https://telega.io/?r=nikapsOH
Download Telegram
from SQL to pandas.pdf
1.3 MB
🐼 "Comparison Between SQL and pandas" – A Handy Reference Guide

⚡️ As a data scientist, I often found myself switching back and forth between SQL and pandas during technical interviews. I was confident answering questions in SQL but sometimes struggled to translate the same logic into pandas – and vice versa.

🔸 To bridge this gap, I created a concise booklet in the form of a comparison table. It maps SQL queries directly to their equivalent pandas implementations, making it easy to understand and switch between both tools.

This reference guide has become an essential part of my interview prep. Before any interview, I quickly review it to ensure I’m ready to tackle data manipulation tasks using either SQL or pandas, depending on what’s required.

📕 Whether you're preparing for interviews or just want to solidify your understanding of both tools, this comparison guide is a great way to stay sharp and efficient.

#DataScience #SQL #pandas #InterviewPrep #Python #DataAnalysis #CareerGrowth #TechTips #Analytics

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13
Numpy from basics to advanced.pdf
2.4 MB
📕 Mastering NumPy – From Basics to Advanced

NumPy is an essential library in the world of data science, widely recognized for its efficiency in numerical computations and data manipulation. This powerful tool simplifies complex operations with arrays, offering a faster and cleaner alternative to traditional Python lists and loops.

The "Mastering NumPy" booklet provides a comprehensive walkthrough—from array creation and indexing to mathematical/statistical operations and advanced topics like reshaping and stacking. All concepts are illustrated with clear, beginner-friendly examples, making it ideal for anyone aiming to boost their data handling skills.

#NumPy #Python #DataScience #MachineLearning #AI #BigData #DeepLearning #DataAnalysis


🌟 Join the communities:
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12💯5🏆41👾1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 DataCamp has officially partnered with Polars**—a cutting-edge DataFrame library designed for speed and efficiency!

To mark this exciting collaboration, **DataCamp
is offering free access to its brand-new course *“Introduction to Polars”* for the next 90 days. 🎉

This course is a great opportunity for learners and professionals alike to master data cleaning, transformation, and analysis with Polars' high-performance engine, lazy execution, and powerful groupby operations.

Unlock the full potential of data workflows and explore how Polars can supercharge large-scale data processing.

🔗 Start learning now:
https://www.datacamp.com/courses/introduction-to-polars

#DataScience #Polars #Python #BigData #DataEngineering #MachineLearning #DataAnalytics #OpenSource #DataCamp #FreeCourse #LearnDataScience


🌟 Join the communities:
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍4
python_basics.pdf
212.3 KB
🚀 Master Python with Ease!

I've just compiled a set of clean and powerful Python Cheat Sheets to help beginners and intermediates speed up their coding workflow.

Whether you're brushing up on the basics or diving into data science, these sheets will save you time and boost your productivity.

📌 Topics Covered:
Python Basics
Jupyter Notebook Tips
Importing Libraries
NumPy Essentials
Pandas Overview

Perfect for students, developers, and anyone looking to keep essential Python knowledge at their fingertips.

#Python #CheatSheets #PythonTips #DataScience #JupyterNotebook #NumPy #Pandas #MachineLearning #AI #CodingTips #PythonForBeginners

🌟 Join the communities:
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
22👨‍💻4👍2🔥1🆒1
🔥 How to become a data scientist in 2025?


1️⃣ First of all, strengthen your foundation (math and statistics) .

✏️ If you don't know math, you'll run into trouble wherever you go. Every model you build, every analysis you do, there's a world of math behind it. You need to know these things well:

Linear Algebra: Link

Calculus: Link

Statistics and Probability: Link



2️⃣ Then learn programming !

✏️ Without further ado, get started learning Python and SQL.

Python: Link

SQL language: Link

Data Structures and Algorithms: Link



3️⃣ Learn to clean and analyze data!

✏️ Data is always messy, and a data scientist must know how to organize it and extract insights from it.

Data cleansing: Link

Data visualization: Link



4️⃣ Learn machine learning !

✏️ Once you've mastered the basic skills, it's time to enter the world of machine learning. Here's what you need to know:

◀️ Supervised learning: regression, classification

◀️ Unsupervised learning: clustering, dimensionality reduction

◀️ Deep learning: neural networks, CNN, RNN

Stanford University CS229 course: Link



5️⃣ Get to know big data and cloud computing !

✏️ Large companies are looking for people who can work with large volumes of data.

◀️ Big data tools (e.g. Hadoop, Spark, Dask)

◀️ Cloud services (AWS, GCP, Azure)



6️⃣ Do a real project and build a portfolio !

✏️ Everything you've learned so far is worthless without a real project!

◀️ Participate in Kaggle and work with real data.

◀️ Do a project from scratch (from data collection to model deployment)

◀️ Put your code on GitHub.

Open Source Data Science Projects: Link



7️⃣ It's time to learn MLOps and model deployment!

✏️ Many people just build models but don't know how to deploy them. But companies want someone who can put the model into action!

◀️ Machine learning operationalization (monitoring, updating models)

◀️ Model deployment tools: Flask, FastAPI, Docker

Stanford University MLOps Course: Link



8️⃣ Always stay up to date and network!

✏️ Follow research articles on arXiv and Google Scholar.

Papers with Code website: link

AI Research at Google website: link

#DataScience #HowToBecomeADataScientist #ML2025 #Python #SQL #MachineLearning #MathForDataScience #BigData #MLOps #DeepLearning #AIResearch #DataVisualization #PortfolioProjects #CloudComputing #DSCareerPath

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
13👍5🔥1
𝗬𝗼𝘂𝗿_𝗗𝗮𝘁𝗮_𝗦𝗰𝗶𝗲𝗻𝗰𝗲_𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄_𝗦𝘁𝘂𝗱𝘆_𝗣𝗹𝗮𝗻.pdf
7.7 MB
1. Master the fundamentals of Statistics

Understand probability, distributions, and hypothesis testing

Differentiate between descriptive vs inferential statistics

Learn various sampling techniques

2. Get hands-on with Python & SQL

Work with data structures, pandas, numpy, and matplotlib

Practice writing optimized SQL queries

Master joins, filters, groupings, and window functions

3. Build real-world projects

Construct end-to-end data pipelines

Develop predictive models with machine learning

Create business-focused dashboards

4. Practice case study interviews

Learn to break down ambiguous business problems

Ask clarifying questions to gather requirements

Think aloud and structure your answers logically

5. Mock interviews with feedback

Use platforms like Pramp or connect with peers

Record and review your answers for improvement

Gather feedback on your explanation and presence

6. Revise machine learning concepts

Understand supervised vs unsupervised learning

Grasp overfitting, underfitting, and bias-variance tradeoff

Know how to evaluate models (precision, recall, F1-score, AUC, etc.)

7. Brush up on system design (if applicable)

Learn how to design scalable data pipelines

Compare real-time vs batch processing

Familiarize with tools: Apache Spark, Kafka, Airflow

8. Strengthen storytelling with data

Apply the STAR method in behavioral questions

Simplify complex technical topics

Emphasize business impact and insight-driven decisions

9. Customize your resume and portfolio

Tailor your resume for each job role

Include links to projects or GitHub profiles

Match your skills to job descriptions

10. Stay consistent and track progress

Set clear weekly goals

Monitor covered topics and completed tasks

Reflect regularly and adapt your plan as needed


#DataScience #InterviewPrep #MLInterviews #DataEngineering #SQL #Python #Statistics #MachineLearning #DataStorytelling #SystemDesign #CareerGrowth #DataScienceRoadmap #PortfolioBuilding #MockInterviews #JobHuntingTips


✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
14👍1
🚀 FREE IT Study Kits for 2025 — Grab Yours Now!

Just found these zero-cost resources from SPOTO👇
Perfect if you're prepping for #Cisco, #AWS, #PMP, #AI, #Python, #Excel, or #Cybersecurity!
100% Free
No signup traps
Instantly downloadable

📘 IT Certs E-book: https://bit.ly/4fJSoLP
☁️ Cloud & AI Kits: https://bit.ly/3F3lc5B
📊 Cybersecurity, Python & Excel: https://bit.ly/4mFrA4g
🧠 Skill Test (Free!): https://bit.ly/3PoKH39
Tag a friend & level up together 💪

🌐 Join the IT Study Group: https://chat.whatsapp.com/E3Vkxa19HPO9ZVkWslBO8s
📲 1-on-1 Exam Help: https://wa.link/k0vy3x
👑Last 24 HOURS to grab Mid-Year Mega Sale prices!Don’t miss Lucky Draw👇
https://bit.ly/43VgcbT
4🔥1
🐍📰 This tutorial will give you an overview of LangGraph fundamentals through hands-on examples, and the tools needed to build your own LLM workflows and agents in LangGraph

Link: https://realpython.com/langgraph-python/

#LangGraph #Python #LLMWorkflows #AIAgents #RealPython #PythonTutorials #LargeLanguageModels #AIAgents #WorkflowAutomation #PythonForA


✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
1
This media is not supported in your browser
VIEW IN TELEGRAM
Over the last year, several articles have been written to help candidates prepare for data science technical interviews. These resources cover a wide range of topics including machine learning, SQL, programming, statistics, and probability.

1️⃣ Machine Learning (ML) Interview
Types of ML Q&A in Data Science Interview
https://shorturl.at/syN37

ML Interview Q&A for Data Scientists
https://shorturl.at/HVWY0

Crack the ML Coding Q&A
https://shorturl.at/CDW08

Deep Learning Interview Q&A
https://shorturl.at/lHPZ6

Top LLMs Interview Q&A
https://shorturl.at/wGRSZ

Top CV Interview Q&A [Part 1]
https://rb.gy/51jcfi

Part 2
https://rb.gy/hqgkbg

Part 3
https://rb.gy/5z87be

2️⃣ SQL Interview Preparation
13 SQL Statements for 90% of Data Science Tasks
https://rb.gy/dkdcl1

SQL Window Functions: Simplifying Complex Queries
https://t.ly/EwSlH

Ace the SQL Questions in the Technical Interview
https://lnkd.in/gNQbYMX9

Unlocking the Power of SQL: How to Ace Top N Problem Questions
https://lnkd.in/gvxVwb9n

How To Ace the SQL Ratio Problems
https://lnkd.in/g6JQqPNA

Cracking the SQL Window Function Coding Questions
https://lnkd.in/gk5u6hnE

SQL & Database Interview Q&A
https://lnkd.in/g75DsEfw

6 Free Resources for SQL Interview Preparation
https://lnkd.in/ghhiG79Q

3️⃣ Programming Questions
Foundations of Data Structures [Part 1]
https://lnkd.in/gX_ZcmRq

Part 2
https://lnkd.in/gATY4rTT

Top Important Python Questions [Conceptual]
https://lnkd.in/gJKaNww5

Top Important Python Questions [Data Cleaning and Preprocessing]
https://lnkd.in/g-pZBs3A

Top Important Python Questions [Machine & Deep Learning]
https://lnkd.in/gZwcceWN

Python Interview Q&A
https://lnkd.in/gcaXc_JE

5 Python Tips for Acing DS Coding Interview
https://lnkd.in/gsj_Hddd

4️⃣ Statistics
Mastering 5 Statistics Concepts to Boost Success
https://lnkd.in/gxEuHiG5

Mastering Hypothesis Testing for Interviews
https://lnkd.in/gSBbbmF8

Introduction to A/B Testing
https://lnkd.in/g35Jihw6

Statistics Interview Q&A for Data Scientists
https://lnkd.in/geHCCt6Q

5️⃣ Probability
15 Probability Concepts to Review [Part 1]
https://lnkd.in/g2rK2tQk

Part 2
https://lnkd.in/gQhXnKwJ

Probability Interview Q&A [Conceptual Questions]
https://lnkd.in/g5jyKqsp

Probability Interview Q&A [Mathematical Questions]
https://lnkd.in/gcWvPhVj

🔜 All links are available in the GitHub repository:
https://lnkd.in/djcgcKRT

#DataScience #InterviewPrep #MachineLearning #SQL #Python #Statistics #Probability #CodingInterview #AIBootcamp #DeepLearning #LLMs #ComputerVision #GitHubResources #CareerInDataScience


✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍2💯2
10 GitHub repos to build a career in AI engineering:

(100% free step-by-step roadmap)

1️⃣ ML for Beginners by Microsoft

A 12-week project-based curriculum that teaches classical ML using Scikit-learn on real-world datasets.

Includes quizzes, lessons, and hands-on projects, with some videos.

GitHub repo → https://lnkd.in/dCxStbYv

2️⃣ AI for Beginners by Microsoft

This repo covers neural networks, NLP, CV, transformers, ethics & more. There are hands-on labs in PyTorch & TensorFlow using Jupyter.

Beginner-friendly, project-based, and full of real-world apps.

GitHub repo → https://lnkd.in/dwS5Jk9E

3️⃣ Neural Networks: Zero to Hero

Now that you’ve grasped the foundations of AI/ML, it’s time to dive deeper.

This repo by Andrej Karpathy builds modern deep learning systems from scratch, including GPTs.

GitHub repo → https://lnkd.in/dXAQWucq

4️⃣ DL Paper Implementations

So far, you have learned the fundamentals of AI, ML, and DL. Now study how the best architectures work.

This repo covers well-documented PyTorch implementations of 60+ research papers on Transformers, GANs, Diffusion models, etc.

GitHub repo → https://lnkd.in/dTrtDrvs

5️⃣ Made With ML

Now it’s time to learn how to go from notebooks to production.

Made With ML teaches you how to design, develop, deploy, and iterate on real-world ML systems using MLOps, CI/CD, and best practices.

GitHub repo → https://lnkd.in/dYyjjBGb

6️⃣ Hands-on LLMs

- You've built neural nets.
- You've explored GPTs and LLMs.

Now apply them. This is a visually rich repo that covers everything about LLMs, like tokenization, fine-tuning, RAG, etc.

GitHub repo → https://lnkd.in/dh2FwYFe

7️⃣ Advanced RAG Techniques

Hands-on LLMs will give you a good grasp of RAG systems. Now learn advanced RAG techniques.

This repo covers 30+ methods to make RAG systems faster, smarter, and accurate, like HyDE, GraphRAG, etc.

GitHub repo → https://lnkd.in/dBKxtX-D

8️⃣ AI Agents for Beginners by Microsoft

After diving into LLMs and mastering RAG, learn how to build AI agents.

This hands-on course covers building AI agents using frameworks like AutoGen.

GitHub repo → https://lnkd.in/dbFeuznE

9️⃣ Agents Towards Production

The above course will teach what AI agents are. Next, learn how to ship them.

This is a practical playbook for building agents covering memory, orchestration, deployment, security & more.

GitHub repo → https://lnkd.in/dcwmamSb

🔟 AI Engg. Hub

To truly master LLMs, RAG, and AI agents, you need projects.

This covers 70+ real-world examples, tutorials, and agent app you can build, adapt, and ship.

GitHub repo → https://lnkd.in/geMYm3b6

#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers


✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
6
mcp guide.pdf.pdf
16.7 MB
A comprehensive PDF has been compiled that includes all MCP-related posts shared over the past six months.

(75 pages, 10+ projects & visual explainers)

Over the last half year, content has been published about the Modular Computation Protocol (MCP), which has gained significant interest and engagement from the AI community. In response to this enthusiasm, all tutorials have been gathered in one place, featuring:

* The fundamentals of MCP
* Explanations with visuals and code
* 11 hands-on projects for AI engineers

Projects included:

1. Build a 100% local MCP Client
2. MCP-powered Agentic RAG
3. MCP-powered Financial Analyst
4. MCP-powered Voice Agent
5. A Unified MCP Server
6. MCP-powered Shared Memory for Claude Desktop and Cursor
7. MCP-powered RAG over Complex Docs
8. MCP-powered Synthetic Data Generator
9. MCP-powered Deep Researcher
10. MCP-powered RAG over Videos
11. MCP-powered Audio Analysis Toolkit

#MCP #ModularComputationProtocol #AIProjects #DeepLearning #ArtificialIntelligence #RAG #VoiceAI #SyntheticData #AIAgents #AIResearch #TechWriting #OpenSourceAI #AI #python

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
11👨‍💻1
Auto-Encoder & Backpropagation by hand ✍️ lecture video ~ 📺 https://byhand.ai/cv/10

It took me a few years to invent this method to show both forward and backward passes for a non-trivial case of a multi-layer perceptron over a batch of inputs, plus gradient descents over multiple epochs, while being able to hand calculate each step and code in Excel at the same time.

= Chapters =
• Encoder & Decoder (00:00)
• Equation (10:09)
• 4-2-4 AutoEncoder (16:38)
• 6-4-2-4-6 AutoEncoder (18:39)
• L2 Loss (20:49)
• L2 Loss Gradient (27:31)
• Backpropagation (30:12)
• Implement Backpropagation (39:00)
• Gradient Descent (44:30)
• Summary (51:39)

#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers


✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
3
This media is not supported in your browser
VIEW IN TELEGRAM
GPU by hand ✍️ I drew this to show how a GPU speeds up an array operation of 8 elements in parallel over 4 threads in 2 clock cycles. Read more 👇

CPU
• It has one core.
• Its global memory has 120 locations (0-119).
• To use the GPU, it needs to copy data from the global memory to the GPU.
• After GPU is done, it will copy the results back.

GPU
• It has four cores to run four threads (0-3).
• It has a register file of 28 locations (0-27)
• This register file has four banks (0-3).
• All threads share the same register file.
• But they must read/write using the four banks.
• Each bank allows 2 reads (Read 0, Read 1) and 1 write in a single clock cycle.

#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers


✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4