Python | Machine Learning | Coding | R
67.2K subscribers
1.25K photos
89 videos
153 files
902 links
Help and ads: @hussein_sheikho

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

https://telega.io/?r=nikapsOH
Download Telegram
The Python + Generative AI series by Azure AI Foundry has ended, but all materials are open

Now you can calmly rewatch the recordings, download the slides, and try the code from each session — from LLM and RAG to AI agents and MCP.

All resources are here: aka.ms/pythonai/resources

👉  @codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
4
In Python, loops are essential for repeating code efficiently: for loops iterate over known sequences (like lists or ranges) when you know the number of iterations, while loops run based on a condition until it's false (ideal for unknown iteration counts or sentinel values), and nested loops handle multi-dimensional data by embedding one inside another—use break/continue for control, and comprehensions for concise alternatives in interviews.

# For loop: Use for fixed iterations over iterables (e.g., processing lists)
fruits = ["apple", "banana", "cherry"]
for fruit in fruits: # Iterates each element
print(fruit) # Output: apple \n banana \n cherry

for i in range(3): # Numeric sequence (start=0, stop=3)
print(i) # Output: 0 \n 1 \n 2

# While loop: Use when iterations depend on a dynamic condition (e.g., user input, convergence)
count = 0
while count < 3: # Runs as long as condition is True
print(count)
count += 1 # Increment to avoid infinite loop! Output: 0 \n 1 \n 2

# Nested loops: Use for 2D data (e.g., matrices, grids); outer for rows, inner for columns
matrix = [[1, 2], [3, 4]]
for row in matrix: # Outer: each sublist
for num in row: # Inner: elements in row
print(num) # Output: 1 \n 2 \n 3 \n 4

# Control statements: break (exit loop), continue (skip iteration)
for i in range(5):
if i == 2:
continue # Skip 2
if i == 4:
break # Exit at 4
print(i) # Output: 0 \n 1 \n 3

# List comprehension: Concise for loop alternative (use for simple transformations/filtering)
squares = [x**2 for x in range(5) if x % 2 == 0] # Even squares
print(squares) # Output: [0, 4, 16]


#python #loops #forloop #whileloop #nestedloops #comprehensions #interviewtips #controlflow

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
3👏2
In Python, the re module handles regular expressions (regex) for pattern matching in strings—vital for text processing like validating emails, extracting data from logs, or cleaning user input in interviews; it's compiled for efficiency but can be complex, so start simple and test with tools like regex101.com.

import re

# Basic search: Find if pattern exists (returns Match object or None)
txt = "The rain in Spain"
match = re.search(r"Spain", txt) # r"" for raw string (avoids escaping issues)
if match:
print(match.group()) # Output: Spain (full match)
print(match.start(), match.end()) # Output: 12 17 (positions)

# findall: Extract all matches as list (non-overlapping)
txt = "The rain in Spain stays mainly in the plain"
emails = re.findall(r"\w+@\w+\.com", "Contact: user1@example.com or user2@test.com")
print(emails) # Output: ['user1@example.com', 'user2@test.com']

# split: Divide string at matches (like str.split but with patterns)
words = re.split(r"\s+", "Hello world\twith spaces") # \s+ matches whitespace
print(words) # Output: ['Hello', 'world', 'with', 'spaces']

# sub: Replace matches (count limits replacements; use \1 for groups)
cleaned = re.sub(r"\d+", "***", "Phone: 123-456-7890 or 098-765-4321", count=1)
print(cleaned) # Output: Phone: *** or 098-765-4321 (first number replaced)

# Metacharacters basics:. (any char except \n), ^ (start), $ (end), * (0+), + (1+),? (0-1)
match = re.search(r"^The.*Spain$", txt) # ^ start, $ end,. any, * 0+ of previous
print(match.group() if match else "No match") # Output: The rain in Spain

# Character classes: \d (digit), \w (word char), [a-z] (range), [^0-9] (not digit)
nums = re.findall(r"\d+", "abc123def456") # \d+ one or more digits
print(nums) # Output: ['123', '456']

words_only = re.findall(r"\w+", "Hello123! World?") # \w+ word chars (alphanum + _)
print(words_only) # Output: ['Hello123', 'World']

# Groups: () capture parts; use for extraction or alternation
date = re.search(r"(\d{4})-(\d{2})-(\d{2})", "Event on 2023-10-27")
if date:
print(date.groups()) # Output: ('2023', '10', '27') (tuples of captures)
print(date.group(1)) # Output: 2023 (first group)

# Alternation: | for OR (e.g., cat|dog)
animals = re.findall(r"cat|dog", "I have a cat and a dog")
print(animals) # Output: ['cat', 'dog']

# Flags: re.IGNORECASE (case-insensitive), re.MULTILINE (^/$ per line)
text = "Spain\nin\nSpain"
matches = re.findall(r"^Spain", text, re.MULTILINE) # ^ matches start of each line
print(matches) # Output: ['Spain', 'Spain']

# Advanced: Greedy vs non-greedy (*? or +?) to match minimal
html = "<div><p>Text</p></div>"
content = re.search(r"<div>.*?</div>", html) #.*? non-greedy (stops at first </div>)
print(content.group()) # Output: <div><p>Text</p></div>

# Edge cases: Empty string, no match
print(re.search(r"a", "")) # Output: None
print(re.findall(r"\d", "no numbers")) # Output: []

# Compile for reuse (faster for multiple uses)
pattern = re.compile(r"\w+@\w+\.com")
email = pattern.search("email@example.com")
print(email.group() if email else "No email") # Output: email@example.com


Regex tips: Escape special chars with \ (e.g., . for literal dot); use raw strings (r""); test incrementally to avoid frustration—common pitfalls include forgetting anchors (^/$) or overusing.*. For performance, compile patterns; in interviews, explain your pattern step-by-step for clarity. #python #regex #re_module #patterns #textprocessing #interviews #stringmatching

😱 https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
6
In Python, NumPy is the cornerstone of scientific computing, offering high-performance multidimensional arrays and tools for working with them—critical for data science interviews and real-world applications! 📊

import numpy as np

# Array Creation - The foundation of NumPy
arr = np.array([1, 2, 3])
zeros = np.zeros((2, 3)) # 2x3 matrix of zeros
ones = np.ones((2, 2), dtype=int) # Integer matrix
arange = np.arange(0, 10, 2) # [0 2 4 6 8]
linspace = np.linspace(0, 1, 5) # [0. 0.25 0.5 0.75 1. ]
print(linspace)


# Array Attributes - Master your data's structure
matrix = np.array([[1, 2, 3], [4, 5, 6]])
print(matrix.shape) # Output: (2, 3)
print(matrix.ndim) # Output: 2
print(matrix.dtype) # Output: int64
print(matrix.size) # Output: 6


# Indexing & Slicing - Precision data access
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(data[1, 2]) # Output: 6 (row 1, col 2)
print(data[0:2, 1:3]) # Output: [[2 3], [5 6]]
print(data[:, -1]) # Output: [3 6 9] (last column)


# Reshaping Arrays - Transform dimensions effortlessly
flat = np.arange(6)
reshaped = flat.reshape(2, 3)
raveled = reshaped.ravel()
print(reshaped)
# Output: [[0 1 2], [3 4 5]]
print(raveled) # Output: [0 1 2 3 4 5]


# Stacking Arrays - Combine datasets vertically/horizontally
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
print(np.vstack((a, b))) # Vertical stack
# Output: [[1 2 3], [4 5 6]]
print(np.hstack((a, b))) # Horizontal stack
# Output: [1 2 3 4 5 6]


# Mathematical Operations - Vectorized calculations
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])
print(x + y) # Output: [5 7 9]
print(x * 2) # Output: [2 4 6]
print(np.dot(x, y)) # Output: 32 (1*4 + 2*5 + 3*6)


# Broadcasting Magic - Operate on mismatched shapes
matrix = np.array([[1, 2, 3], [4, 5, 6]])
scalar = 10
print(matrix + scalar)
# Output: [[11 12 13], [14 15 16]]


# Aggregation Functions - Statistical power in one line
values = np.array([1, 5, 3, 9, 7])
print(np.sum(values)) # Output: 25
print(np.mean(values)) # Output: 5.0
print(np.max(values)) # Output: 9
print(np.std(values)) # Output: 2.8284271247461903


# Boolean Masking - Filter data like a pro
temperatures = np.array([18, 25, 12, 30, 22])
hot_days = temperatures > 24
print(temperatures[hot_days]) # Output: [25 30]


# Random Number Generation - Simulate real-world data
print(np.random.rand(2, 2)) # Uniform distribution
print(np.random.randn(3)) # Normal distribution
print(np.random.randint(0, 10, (2, 3))) # Random integers


# Linear Algebra Essentials - Solve equations like a physicist
A = np.array([[3, 1], [1, 2]])
b = np.array([9, 8])
x = np.linalg.solve(A, b)
print(x) # Output: [2. 3.] (Solution to 3x+y=9 and x+2y=8)

# Matrix inverse and determinant
print(np.linalg.inv(A)) # Output: [[ 0.4 -0.2], [-0.2 0.6]]
print(np.linalg.det(A)) # Output: 5.0


# File Operations - Save/load your computational work
data = np.array([[1, 2], [3, 4]])
np.save('array.npy', data)
loaded = np.load('array.npy')
print(np.array_equal(data, loaded)) # Output: True


# Interview Power Move: Vectorization vs Loops
# 10x faster than native Python loops!
def square_sum(n):
arr = np.arange(n)
return np.sum(arr ** 2)

print(square_sum(5)) # Output: 30 (0²+1²+2²+3²+4²)


# Pro Tip: Memory-efficient data processing
# Process 1GB array without loading entire dataset
large_array = np.memmap('large_data.bin', dtype='float32', mode='r', shape=(1000000, 100))
print(large_array[0:5, 0:3]) # Process small slice


By: @DataScienceQ 🚀

#Python #NumPy #DataScience #CodingInterview #MachineLearning #ScientificComputing #DataAnalysis #Programming #TechJobs #DeveloperTips
5
🧭 Finally, with this roadmap, I understood where to start learning data science!

👨🏻‍💻 This map is designed like a metro map that starts from basic concepts and goes through machine learning, big data, and data visualization.

✏️ In this roadmap, it shows step by step where to start, what to learn, and how to become a professional data scientist.

1⃣ Fundamentals: First of all, you need to strengthen your foundation; that means math, probability, distributions, and linear algebra. These are the backbone of any data analysis.

2⃣ Programming and Statistics: Learn to work with tools like Python, R, and Excel, and enter the world of statistics: analysis of variance (ANOVA), confidence intervals, and regression are the main basics.

3⃣ Machine Learning: Move on to classification, clustering, prediction, and learn how to train and test machine learning models.

5⃣ Big Data and NLP: If you deal with large datasets, work with tools like Hadoop and Hive. In natural language processing, learn techniques like sentiment analysis, tagging, and text analysis.

5⃣ Visualization and Data Engineering: Learn how to turn data into understandable and engaging stories using tools like Tableau, D3.js, and ggplot2. Also, get familiar with concepts like pipelines, cleaning, and data preparation.

6⃣ Optional Paths: Depending on your career path, some parts may not be necessary. For example, if you want to specialize in machine learning, you don’t need to go very deep into big data or text mining.

📹 Recommended YouTube Channels:

🎞 Channel Krish Naik

🎞 Channel Ken Jee

🎞 Channel StatQuest

🎞 Channel codebasics

🎞 Channel Emma Ding

🔻 Certificates and Learning Resources:

📄 SQL Fundamentals

📄 IBM Data Science Professional

📄 Khan Academy

🏐 Start with simpler topics, keep going consistently, and most importantly, build real projects while learning. Because this way of learning helps increase your confidence, and high confidence turns into real job opportunities.

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
6
🐍 10 Free Courses to Learn Python

👩🏻‍💻 These top-notch resources can take your #Python skills several levels higher. The best part is that they are all completely free!


1⃣ Comprehensive Python Course for Beginners

📃A complete video course that teaches Python from basic to advanced with clear and organized explanations.


2⃣ Intensive Python Training

📃A 4-hour intensive course, fast, focused, and to the point.


3⃣ Comprehensive Python Course

📃Training with lots of real examples and exercises.


4⃣ Introduction to Python

📃Learn the fundamentals with a focus on logic, clean coding, and solving real problems.


5⃣ Automate Daily Tasks with Python

📃Learn how to automate your daily project tasks with Python.


6⃣ Learn Python with Interactive Practice

📃Interactive lessons with real data and practical exercises.


7⃣ Scientific Computing with Python

📃Project-based, for those who want to work with data and scientific analysis.


8⃣ Step-by-Step Python Training

📃Step-by-step and short training for beginners with interactive exercises.


9⃣ Google's Python Class

📃A course by Google engineers with real exercises and professional tips.


1⃣ Introduction to Programming with Python

📃University-level content for conceptual learning and problem-solving with exercises and projects.

🌐 #DataScience #DataScience

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
10
🤖🧠 AI Projects : A Comprehensive Showcase of Machine Learning, Deep Learning and Generative AI

🗓️ 27 Oct 2025
📚 AI News & Trends

Artificial Intelligence (AI) is transforming industries across the globe, driving innovation through automation, data-driven insights and intelligent decision-making. Whether it’s predicting house prices, detecting diseases or building conversational chatbots, AI is at the core of modern digital solutions. The AI Project Gallery by Hema Kalyan Murapaka is an exceptional GitHub repository that curates a wide ...

#AI #MachineLearning #DeepLearning #GenerativeAI #ArtificialIntelligence #GitHub
3🔥1
In Python, image processing unlocks powerful capabilities for computer vision, data augmentation, and automation—master these techniques to excel in ML engineering interviews and real-world applications! 🖼 

# PIL/Pillow Basics - The essential image library
from PIL import Image

# Open and display image
img = Image.open("input.jpg")
img.show()

# Convert formats
img.save("output.png")
img.convert("L").save("grayscale.jpg")  # RGB to grayscale

# Basic transformations
img.rotate(90).save("rotated.jpg")
img.resize((300, 300)).save("resized.jpg")
img.transpose(Image.FLIP_LEFT_RIGHT).save("mirrored.jpg")


more explain: https://hackmd.io/@husseinsheikho/imageprocessing

#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
5👍1
🤖🧠 Free for 1 Year: ChatGPT Go’s Big Move in India

🗓️ 28 Oct 2025
📚 AI News & Trends

On 28 October 2025, OpenAI announced that its mid-tier subscription plan, ChatGPT Go, will be available free for one full year in India starting from 4 November. (www.ndtv.com) What is ChatGPT Go? What’s the deal? Why this matters ? Things to check / caveats What should users do? Broader implications This move by OpenAI indicates ...

#ChatGPTGo #OpenAI #India #FreeAccess #ArtificialIntelligence #TechNews
7
Gemini will be with you here on our channel and will post useful things for you 😉

Are you ready?
Please open Telegram to view this post
VIEW IN TELEGRAM
12👍7
💡 Building a Simple Convolutional Neural Network (CNN)

Constructing a basic Convolutional Neural Network (CNN) is a fundamental step in deep learning for image processing. Using TensorFlow's Keras API, we can define a network with convolutional, pooling, and dense layers to classify images. This example sets up a simple CNN to recognize handwritten digits from the MNIST dataset.

import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
import numpy as np

# 1. Load and preprocess the MNIST dataset
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Reshape images for CNN: (batch_size, height, width, channels)
# MNIST images are 28x28 grayscale, so channels = 1
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255

# 2. Define the CNN architecture
model = models.Sequential()

# First Convolutional Block
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))

# Second Convolutional Block
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))

# Flatten the 3D output to 1D for the Dense layers
model.add(layers.Flatten())

# Dense (fully connected) layers
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax')) # Output layer for 10 classes (digits 0-9)

# 3. Compile the model
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

# Print a summary of the model layers
model.summary()

# 4. Train the model (uncomment to run training)
# print("\nTraining the model...")
# model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_split=0.1)

# 5. Evaluate the model (uncomment to run evaluation)
# print("\nEvaluating the model...")
# test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
# print(f"Test accuracy: {test_acc:.4f}")


Code explanation: This script defines a simple CNN using Keras. It loads and normalizes MNIST images. The Sequential model adds Conv2D layers for feature extraction, MaxPooling2D for downsampling, a Flatten layer to transition to 1D, and Dense layers for classification. The model is then compiled with an optimizer, loss function, and metrics, and a summary of its architecture is printed. Training and evaluation steps are included as commented-out examples.

#Python #DeepLearning #CNN #Keras #TensorFlow

━━━━━━━━━━━━━━━
By: @CodeProgrammer
11
Matplotlib_cheatsheet.pdf
3.1 MB
🔥 Huge cheat sheet for plotting in Matplotlib with code examples

📊 Matplotlib is a powerful plotting library in Python used for creating static, animated, and interactive visualizations.

Main features of Matplotlib:
💬 Versatility: can generate a wide range of plots including line plots, scatter plots, bar charts, histograms, and pie charts.

💬 Customization: offers extensive options to control every aspect of the plot such as line styles, colors, markers, labels, and annotations.

💬 Integration with NumPy: easily integrates with NumPy, simplifying plotting of data arrays directly.

💬 Publication quality: creates high-quality plots suitable for publication, with precise control over aesthetics.

💬 Extensibility: easily extended with a large ecosystem of additional toolkits and extensions, such as Seaborn and Pandas plotting functions.

💬 Cross-platform: platform-independent and can run on various operating systems including Windows, macOS, and Linux.

💬 Interactive plots: supports interactive plotting with widgets and event handling, allowing users to dynamically explore data.

#doc #cheatsheet #PythonTips

Matplotlib Cheatsheet (⭐️⭐️⭐️⭐️⭐️)

https://t.me/CodeProgrammer 😡
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍1