http://t.me/codeprogrammer
The Transformer's encoder clearly explained
Please open Telegram to view this post
VIEW IN TELEGRAM
http://t.me/codeprogrammer
The Transformer's decoder clearly explained
Please open Telegram to view this post
VIEW IN TELEGRAM
http://t.me/codeprogrammer
The Transformers architecture clearly explained
Please open Telegram to view this post
VIEW IN TELEGRAM
π¨π»βπ» In a recent GitHub report, with the expansion of artificial intelligence, Python could finally overtake JavaScript and become the most popular language on GitHub in 2024. This happened after 10 years of JavaScript dominance and it is not very strange.
β
β
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
ChatGPT cheat sheet for data science.pdf
29 MB
Title: ChatGPT Cheat Sheet for Data Science (2025)
Source: DataCamp
Description:
This comprehensive cheat sheet serves as an essential guide for leveraging ChatGPT in data science workflows. Designed for both beginners and seasoned practitioners, it provides actionable prompts, code examples, and best practices to streamline tasks such as data generation, analysis, modeling, and automation. Key features include:
- Code Generation: Scripts for creating sample datasets in Python using Pandas and NumPy (e.g., generating tables with primary keys, names, ages, and salaries) .
- Data Analysis: Techniques for exploratory data analysis (EDA), hypothesis testing, and predictive modeling, including visualization recommendations (bar charts, line graphs) and statistical methods .
- Machine Learning: Guidance on algorithm selection, hyperparameter tuning, and model interpretation, with examples tailored for Python and SQL .
- NLP Applications: Tools for text classification, sentiment analysis, and named entity recognition, leveraging ChatGPTβs natural language processing capabilities .
- Workflow Automation: Strategies for automating repetitive tasks like data cleaning (handling duplicates, missing values) and report generation .
The guide also addresses ChatGPTβs limitations, such as potential biases and hallucinations, while emphasizing best practices for iterative prompting and verification . Updated for 2025, it integrates the latest advancements in AI-assisted data science, making it a must-have resource for efficient, conversational-driven analytics.
Tags:
#ChatGPT #DataScience #CheatSheet #2025Edition #DataCamp #Python #MachineLearning #DataAnalysis #Automation #NLP #SQL
https://t.me/CodeProgrammerβοΈ
Source: DataCamp
Description:
This comprehensive cheat sheet serves as an essential guide for leveraging ChatGPT in data science workflows. Designed for both beginners and seasoned practitioners, it provides actionable prompts, code examples, and best practices to streamline tasks such as data generation, analysis, modeling, and automation. Key features include:
- Code Generation: Scripts for creating sample datasets in Python using Pandas and NumPy (e.g., generating tables with primary keys, names, ages, and salaries) .
- Data Analysis: Techniques for exploratory data analysis (EDA), hypothesis testing, and predictive modeling, including visualization recommendations (bar charts, line graphs) and statistical methods .
- Machine Learning: Guidance on algorithm selection, hyperparameter tuning, and model interpretation, with examples tailored for Python and SQL .
- NLP Applications: Tools for text classification, sentiment analysis, and named entity recognition, leveraging ChatGPTβs natural language processing capabilities .
- Workflow Automation: Strategies for automating repetitive tasks like data cleaning (handling duplicates, missing values) and report generation .
The guide also addresses ChatGPTβs limitations, such as potential biases and hallucinations, while emphasizing best practices for iterative prompting and verification . Updated for 2025, it integrates the latest advancements in AI-assisted data science, making it a must-have resource for efficient, conversational-driven analytics.
Tags:
#ChatGPT #DataScience #CheatSheet #2025Edition #DataCamp #Python #MachineLearning #DataAnalysis #Automation #NLP #SQL
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
Four best-advanced university courses on NLP & LLM to advance your skills:
1. Advanced NLP -- Carnegie Mellon University
Link: https://lnkd.in/ddEtMghr
2. Recent Advances on Foundation Models -- University of Waterloo
Link: https://lnkd.in/dbdpUV9v
3. Large Language Model Agents -- University of California, Berkeley
Link: https://lnkd.in/d-MdSM8Y
4. Advanced LLM Agent -- University Berkeley
Link: https://lnkd.in/dvCD4HR4
#LLM #python #AI #Agents #RAG #NLP
π― BEST DATA SCIENCE CHANNELS ON TELEGRAM π
1. Advanced NLP -- Carnegie Mellon University
Link: https://lnkd.in/ddEtMghr
2. Recent Advances on Foundation Models -- University of Waterloo
Link: https://lnkd.in/dbdpUV9v
3. Large Language Model Agents -- University of California, Berkeley
Link: https://lnkd.in/d-MdSM8Y
4. Advanced LLM Agent -- University Berkeley
Link: https://lnkd.in/dvCD4HR4
#LLM #python #AI #Agents #RAG #NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
Full PyTorch Implementation of Transformer-XL
If you're looking to understand and experiment with Transformer-XL using PyTorch, this resource provides a clean and complete implementation. Transformer-XL is a powerful model that extends the Transformer architecture with recurrence, enabling learning dependencies beyond fixed-length segments.
The implementation is ideal for researchers, students, and developers aiming to dive deeper into advanced language modeling techniques.
Explore the code and start building:
https://www.k-a.in/pyt-transformerXL.html
#TransformerXL #PyTorch #DeepLearning #NLP #LanguageModeling #AI #MachineLearning #OpenSource #ResearchTools
https://t.me/CodeProgrammer
If you're looking to understand and experiment with Transformer-XL using PyTorch, this resource provides a clean and complete implementation. Transformer-XL is a powerful model that extends the Transformer architecture with recurrence, enabling learning dependencies beyond fixed-length segments.
The implementation is ideal for researchers, students, and developers aiming to dive deeper into advanced language modeling techniques.
Explore the code and start building:
https://www.k-a.in/pyt-transformerXL.html
#TransformerXL #PyTorch #DeepLearning #NLP #LanguageModeling #AI #MachineLearning #OpenSource #ResearchTools
https://t.me/CodeProgrammer
This media is not supported in your browser
VIEW IN TELEGRAM
A new interactive sentiment visualization project has been developed, featuring a dynamic smiley face that reflects sentiment analysis results in real time. Using a natural language processing model, the system evaluates input text and adjusts the smiley face expression accordingly:
π Positive sentiment
βΉοΈ Negative sentiment
The visualization offers an intuitive and engaging way to observe sentiment dynamics as they happen.
π GitHub: https://lnkd.in/e_gk3hfe
π° Article: https://lnkd.in/e_baNJd2
#AI #SentimentAnalysis #DataVisualization #InteractiveDesign #NLP #MachineLearning #Python #GitHubProjects #TowardsDataScience
π Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
π± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
The visualization offers an intuitive and engaging way to observe sentiment dynamics as they happen.
#AI #SentimentAnalysis #DataVisualization #InteractiveDesign #NLP #MachineLearning #Python #GitHubProjects #TowardsDataScience
Please open Telegram to view this post
VIEW IN TELEGRAM