Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?
Basic Concepts (Q1โQ15)
Architecture & Components (Q16โQ30)
Attention & Transformers (Q31โQ45)
Training & Optimization (Q46โQ55)
Advanced & Real-World Applications (Q56โQ65)
Answer Key & Explanations
#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #MCQ #InterviewPrep
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค6
๐ Comprehensive Guide: How to Prepare for an Image Processing Job Interview โ 500 Most Common Interview Questions
Let's start: https://hackmd.io/@husseinsheikho/IP
#ImageProcessing #ComputerVision #OpenCV #Python #InterviewPrep #DigitalImageProcessing #MachineLearning #AI #SignalProcessing #ComputerGraphics
Let's start: https://hackmd.io/@husseinsheikho/IP
#ImageProcessing #ComputerVision #OpenCV #Python #InterviewPrep #DigitalImageProcessing #MachineLearning #AI #SignalProcessing #ComputerGraphics
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4๐1๐ฅ1
๐ Comprehensive Guide: How to Prepare for a Graph Neural Networks (GNN) Job Interview โ 350 Most Common Interview Questions
Read: https://hackmd.io/@husseinsheikho/GNN-interview
#GNN #GraphNeuralNetworks #MachineLearning #DeepLearning #AI #DataScience #PyTorchGeometric #DGL #NodeClassification #LinkPrediction #GraphML
Read: https://hackmd.io/@husseinsheikho/GNN-interview
#GNN #GraphNeuralNetworks #MachineLearning #DeepLearning #AI #DataScience #PyTorchGeometric #DGL #NodeClassification #LinkPrediction #GraphML
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
โค8
This media is not supported in your browser
VIEW IN TELEGRAM
โ
โ
#Python #OpenCV #Automation #ML #AI #DEEPLEARNING #MACHINELEARNING #ComputerVision
Please open Telegram to view this post
VIEW IN TELEGRAM
โค9๐4๐ฏ1๐1
๐ฃ๐ฟ๐ฒ๐ฝ๐ฎ๐ฟ๐ฒ ๐ณ๐ผ๐ฟ ๐๐ผ๐ฏ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐.
In DS or AI/ML interviews, you need to be able to explain models, debug them live, and design AI/ML systems from scratch. If you canโt demonstrate this during an interview, expect to hear, โWeโll get back to you.โ
The attached person's name is Chip Huyen. Hopefully you know her; if not, then I can't help you here. She is probably one of the finest authors in the field of AI/ML.
She designed proper documentation/a book for common ML interview questions.
Target Audiences: ML engineer, a platform engineer, a research scientist, or you want to do ML but donโt yet know the differences among those titles.Check the comment section for links and repos.
๐ link:
https://huyenchip.com/ml-interviews-book/
๏ปฟ
https://t.me/CodeProgrammer๐
In DS or AI/ML interviews, you need to be able to explain models, debug them live, and design AI/ML systems from scratch. If you canโt demonstrate this during an interview, expect to hear, โWeโll get back to you.โ
The attached person's name is Chip Huyen. Hopefully you know her; if not, then I can't help you here. She is probably one of the finest authors in the field of AI/ML.
She designed proper documentation/a book for common ML interview questions.
Target Audiences: ML engineer, a platform engineer, a research scientist, or you want to do ML but donโt yet know the differences among those titles.Check the comment section for links and repos.
https://huyenchip.com/ml-interviews-book/
#JobInterview #MachineLearning #AI #DataScience #MLEngineer #AIInterview #TechCareers #DeepLearning #AICommunity #MLSystems #CareerGrowth #AIJobs #ChipHuyen #InterviewPrep #DataScienceCommunit
๏ปฟ
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค6๐ฏ2
๐ค๐ง The Little Book of Deep Learning โ A Complete Summary and Chapter-Wise Overview
๐๏ธ 08 Oct 2025
๐ AI News & Trends
In the ever-evolving world of Artificial Intelligence, deep learning continues to be the driving force behind breakthroughs in computer vision, speech recognition and natural language processing. For those seeking a clear, structured and accessible guide to understanding how deep learning really works, โThe Little Book of Deep Learningโ by Franรงois Fleuret is a gem. This ...
#DeepLearning #ArtificialIntelligence #MachineLearning #NeuralNetworks #AIGuides #FrancoisFleuret
๐๏ธ 08 Oct 2025
๐ AI News & Trends
In the ever-evolving world of Artificial Intelligence, deep learning continues to be the driving force behind breakthroughs in computer vision, speech recognition and natural language processing. For those seeking a clear, structured and accessible guide to understanding how deep learning really works, โThe Little Book of Deep Learningโ by Franรงois Fleuret is a gem. This ...
#DeepLearning #ArtificialIntelligence #MachineLearning #NeuralNetworks #AIGuides #FrancoisFleuret
โค6
๐ค๐ง Build a Large Language Model From Scratch: A Step-by-Step Guide to Understanding and Creating LLMs
๐๏ธ 08 Oct 2025
๐ AI News & Trends
In recent years, Large Language Models (LLMs) have revolutionized the world of Artificial Intelligence (AI). From ChatGPT and Claude to Llama and Mistral, these models power the conversational systems, copilots, and generative tools that dominate todayโs AI landscape. However, for most developers and learners, the inner workings of these systems remain a mystery until now. ...
#LargeLanguageModels #LLM #ArtificialIntelligence #DeepLearning #MachineLearning #AIGuides
๐๏ธ 08 Oct 2025
๐ AI News & Trends
In recent years, Large Language Models (LLMs) have revolutionized the world of Artificial Intelligence (AI). From ChatGPT and Claude to Llama and Mistral, these models power the conversational systems, copilots, and generative tools that dominate todayโs AI landscape. However, for most developers and learners, the inner workings of these systems remain a mystery until now. ...
#LargeLanguageModels #LLM #ArtificialIntelligence #DeepLearning #MachineLearning #AIGuides
โค3
๐ค๐ง Mastering Large Language Models: Top #1 Complete Guide to Maxime Labonneโs LLM Course
๐๏ธ 22 Oct 2025
๐ AI News & Trends
In the rapidly evolving landscape of artificial intelligence, large language models (LLMs) have become the foundation of modern AI innovation powering tools like ChatGPT, Claude, Gemini and countless enterprise AI applications. However, building, fine-tuning and deploying these models require deep technical understanding and hands-on expertise. To bridge this knowledge gap, Maxime Labonne, a leading AI ...
#LLM #ArtificialIntelligence #MachineLearning #DeepLearning #AIEngineering #LargeLanguageModels
๐๏ธ 22 Oct 2025
๐ AI News & Trends
In the rapidly evolving landscape of artificial intelligence, large language models (LLMs) have become the foundation of modern AI innovation powering tools like ChatGPT, Claude, Gemini and countless enterprise AI applications. However, building, fine-tuning and deploying these models require deep technical understanding and hands-on expertise. To bridge this knowledge gap, Maxime Labonne, a leading AI ...
#LLM #ArtificialIntelligence #MachineLearning #DeepLearning #AIEngineering #LargeLanguageModels
โค2๐1
๐ค๐ง The Ultimate #1 Collection of AI Books In Awesome-AI-Books Repository
๐๏ธ 22 Oct 2025
๐ AI News & Trends
Artificial Intelligence (AI) has emerged as one of the most transformative technologies of the 21st century. From powering self-driving cars to enabling advanced conversational AI like ChatGPT, AI is redefining how humans interact with machines. However, mastering AI requires a strong foundation in theory, mathematics, programming and hands-on experimentation. For enthusiasts, students and professionals seeking ...
#ArtificialIntelligence #AIBooks #MachineLearning #DeepLearning #AIResources #TechBooks
๐๏ธ 22 Oct 2025
๐ AI News & Trends
Artificial Intelligence (AI) has emerged as one of the most transformative technologies of the 21st century. From powering self-driving cars to enabling advanced conversational AI like ChatGPT, AI is redefining how humans interact with machines. However, mastering AI requires a strong foundation in theory, mathematics, programming and hands-on experimentation. For enthusiasts, students and professionals seeking ...
#ArtificialIntelligence #AIBooks #MachineLearning #DeepLearning #AIResources #TechBooks
โค2๐ฅ1
๐ค๐ง Master Machine Learning: Explore the Ultimate โMachine-Learning-Tutorialsโ Repository
๐๏ธ 23 Oct 2025
๐ AI News & Trends
In todayโs data-driven world, Machine Learning (ML) has become the cornerstone of modern technology from intelligent chatbots to predictive analytics and recommendation systems. However, mastering ML isnโt just about coding, it requires a structured understanding of algorithms, statistics, optimization techniques and real-world problem-solving. Thatโs where Ujjwal Karnโs Machine-Learning-Tutorials GitHub repository stands out. This open-source, topic-wise ...
#MachineLearning #MLTutorials #ArtificialIntelligence #DataScience #OpenSource #AIEducation
๐๏ธ 23 Oct 2025
๐ AI News & Trends
In todayโs data-driven world, Machine Learning (ML) has become the cornerstone of modern technology from intelligent chatbots to predictive analytics and recommendation systems. However, mastering ML isnโt just about coding, it requires a structured understanding of algorithms, statistics, optimization techniques and real-world problem-solving. Thatโs where Ujjwal Karnโs Machine-Learning-Tutorials GitHub repository stands out. This open-source, topic-wise ...
#MachineLearning #MLTutorials #ArtificialIntelligence #DataScience #OpenSource #AIEducation
โค5๐1
Forwarded from Python Data Science Jobs & Interviews
In Python, NumPy is the cornerstone of scientific computing, offering high-performance multidimensional arrays and tools for working with themโcritical for data science interviews and real-world applications! ๐
By: @DataScienceQ ๐
#Python #NumPy #DataScience #CodingInterview #MachineLearning #ScientificComputing #DataAnalysis #Programming #TechJobs #DeveloperTips
import numpy as np
# Array Creation - The foundation of NumPy
arr = np.array([1, 2, 3])
zeros = np.zeros((2, 3)) # 2x3 matrix of zeros
ones = np.ones((2, 2), dtype=int) # Integer matrix
arange = np.arange(0, 10, 2) # [0 2 4 6 8]
linspace = np.linspace(0, 1, 5) # [0. 0.25 0.5 0.75 1. ]
print(linspace)
# Array Attributes - Master your data's structure
matrix = np.array([[1, 2, 3], [4, 5, 6]])
print(matrix.shape) # Output: (2, 3)
print(matrix.ndim) # Output: 2
print(matrix.dtype) # Output: int64
print(matrix.size) # Output: 6
# Indexing & Slicing - Precision data access
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(data[1, 2]) # Output: 6 (row 1, col 2)
print(data[0:2, 1:3]) # Output: [[2 3], [5 6]]
print(data[:, -1]) # Output: [3 6 9] (last column)
# Reshaping Arrays - Transform dimensions effortlessly
flat = np.arange(6)
reshaped = flat.reshape(2, 3)
raveled = reshaped.ravel()
print(reshaped)
# Output: [[0 1 2], [3 4 5]]
print(raveled) # Output: [0 1 2 3 4 5]
# Stacking Arrays - Combine datasets vertically/horizontally
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
print(np.vstack((a, b))) # Vertical stack
# Output: [[1 2 3], [4 5 6]]
print(np.hstack((a, b))) # Horizontal stack
# Output: [1 2 3 4 5 6]
# Mathematical Operations - Vectorized calculations
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])
print(x + y) # Output: [5 7 9]
print(x * 2) # Output: [2 4 6]
print(np.dot(x, y)) # Output: 32 (1*4 + 2*5 + 3*6)
# Broadcasting Magic - Operate on mismatched shapes
matrix = np.array([[1, 2, 3], [4, 5, 6]])
scalar = 10
print(matrix + scalar)
# Output: [[11 12 13], [14 15 16]]
# Aggregation Functions - Statistical power in one line
values = np.array([1, 5, 3, 9, 7])
print(np.sum(values)) # Output: 25
print(np.mean(values)) # Output: 5.0
print(np.max(values)) # Output: 9
print(np.std(values)) # Output: 2.8284271247461903
# Boolean Masking - Filter data like a pro
temperatures = np.array([18, 25, 12, 30, 22])
hot_days = temperatures > 24
print(temperatures[hot_days]) # Output: [25 30]
# Random Number Generation - Simulate real-world data
print(np.random.rand(2, 2)) # Uniform distribution
print(np.random.randn(3)) # Normal distribution
print(np.random.randint(0, 10, (2, 3))) # Random integers
# Linear Algebra Essentials - Solve equations like a physicist
A = np.array([[3, 1], [1, 2]])
b = np.array([9, 8])
x = np.linalg.solve(A, b)
print(x) # Output: [2. 3.] (Solution to 3x+y=9 and x+2y=8)
# Matrix inverse and determinant
print(np.linalg.inv(A)) # Output: [[ 0.4 -0.2], [-0.2 0.6]]
print(np.linalg.det(A)) # Output: 5.0
# File Operations - Save/load your computational work
data = np.array([[1, 2], [3, 4]])
np.save('array.npy', data)
loaded = np.load('array.npy')
print(np.array_equal(data, loaded)) # Output: True
# Interview Power Move: Vectorization vs Loops
# 10x faster than native Python loops!
def square_sum(n):
arr = np.arange(n)
return np.sum(arr ** 2)
print(square_sum(5)) # Output: 30 (0ยฒ+1ยฒ+2ยฒ+3ยฒ+4ยฒ)
# Pro Tip: Memory-efficient data processing
# Process 1GB array without loading entire dataset
large_array = np.memmap('large_data.bin', dtype='float32', mode='r', shape=(1000000, 100))
print(large_array[0:5, 0:3]) # Process small slice
By: @DataScienceQ ๐
#Python #NumPy #DataScience #CodingInterview #MachineLearning #ScientificComputing #DataAnalysis #Programming #TechJobs #DeveloperTips
โค4
๐ค๐ง AI Projects : A Comprehensive Showcase of Machine Learning, Deep Learning and Generative AI
๐๏ธ 27 Oct 2025
๐ AI News & Trends
Artificial Intelligence (AI) is transforming industries across the globe, driving innovation through automation, data-driven insights and intelligent decision-making. Whether itโs predicting house prices, detecting diseases or building conversational chatbots, AI is at the core of modern digital solutions. The AI Project Gallery by Hema Kalyan Murapaka is an exceptional GitHub repository that curates a wide ...
#AI #MachineLearning #DeepLearning #GenerativeAI #ArtificialIntelligence #GitHub
๐๏ธ 27 Oct 2025
๐ AI News & Trends
Artificial Intelligence (AI) is transforming industries across the globe, driving innovation through automation, data-driven insights and intelligent decision-making. Whether itโs predicting house prices, detecting diseases or building conversational chatbots, AI is at the core of modern digital solutions. The AI Project Gallery by Hema Kalyan Murapaka is an exceptional GitHub repository that curates a wide ...
#AI #MachineLearning #DeepLearning #GenerativeAI #ArtificialIntelligence #GitHub
โค1
๐ค๐ง Reinforcement Learning for Large Language Models: A Complete Guide from Foundations to Frontiers Arun Shankar, AI Engineer at Google
๐๏ธ 27 Oct 2025
๐ AI News & Trends
Artificial Intelligence is evolving rapidly and at the center of this evolution is Reinforcement Learning (RL), the science of teaching machines to make better decisions through experience and feedback. In โReinforcement Learning for Large Language Models: A Complete Guide from Foundations to Frontiersโ, Arun Shankar, an Applied AI Engineer at Google presents one of the ...
#ReinforcementLearning #LargeLanguageModels #ArtificialIntelligence #MachineLearning #AIEngineer #Google
๐๏ธ 27 Oct 2025
๐ AI News & Trends
Artificial Intelligence is evolving rapidly and at the center of this evolution is Reinforcement Learning (RL), the science of teaching machines to make better decisions through experience and feedback. In โReinforcement Learning for Large Language Models: A Complete Guide from Foundations to Frontiersโ, Arun Shankar, an Applied AI Engineer at Google presents one of the ...
#ReinforcementLearning #LargeLanguageModels #ArtificialIntelligence #MachineLearning #AIEngineer #Google
โค1๐ฅ1