๐จ๐ปโ๐ป Real learning means implementing ideas and building prototypes. It's time to skip the repetitive training and get straight to real data science projects!
โ
โ
#DataScience #PythonProjects #MachineLearning #DeepLearning #AIProjects #RealWorldData #OpenSource #DataAnalysis #ProjectBasedLearning #LearnByBuilding
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค10๐3๐ฏ1๐1
rnn.pdf
5.6 MB
๐ Understanding Recurrent Neural Networks (RNNs) Cheat Sheet!
Recurrent Neural Networks are a powerful type of neural network designed to handle sequential data. They are widely used in applications like natural language processing, speech recognition, and time-series prediction. Here's a quick cheat sheet to get you started:
๐ Key Concepts:
Sequential Data: RNNs are designed to process sequences of data, making them ideal for tasks where order matters.
Hidden State: Maintains information from previous inputs, enabling memory across time steps.
Backpropagation Through Time (BPTT): The method used to train RNNs by unrolling the network through time.
๐ง Common Variants:
Long Short-Term Memory (LSTM): Addresses vanishing gradient problems with gates to manage information flow.
Gated Recurrent Unit (GRU): Similar to LSTMs but with a simpler architecture.
๐ Applications:
Language Modeling: Predicting the next word in a sentence.
Sentiment Analysis: Understanding sentiments in text.
Time-Series Forecasting: Predicting future data points in a series.
๐ Resources:
Dive deeper with tutorials on platforms like Coursera, edX, or YouTube.
Explore open-source libraries like TensorFlow or PyTorch for implementation.
Let's harness the power of RNNs to innovate and solve complex problems!๐ก
Recurrent Neural Networks are a powerful type of neural network designed to handle sequential data. They are widely used in applications like natural language processing, speech recognition, and time-series prediction. Here's a quick cheat sheet to get you started:
๐ Key Concepts:
Sequential Data: RNNs are designed to process sequences of data, making them ideal for tasks where order matters.
Hidden State: Maintains information from previous inputs, enabling memory across time steps.
Backpropagation Through Time (BPTT): The method used to train RNNs by unrolling the network through time.
๐ง Common Variants:
Long Short-Term Memory (LSTM): Addresses vanishing gradient problems with gates to manage information flow.
Gated Recurrent Unit (GRU): Similar to LSTMs but with a simpler architecture.
๐ Applications:
Language Modeling: Predicting the next word in a sentence.
Sentiment Analysis: Understanding sentiments in text.
Time-Series Forecasting: Predicting future data points in a series.
๐ Resources:
Dive deeper with tutorials on platforms like Coursera, edX, or YouTube.
Explore open-source libraries like TensorFlow or PyTorch for implementation.
Let's harness the power of RNNs to innovate and solve complex problems!
#RNN #RecurrentNeuralNetworks #DeepLearning #NLP #LSTM #GRU #TimeSeriesForecasting #MachineLearning #NeuralNetworks #AIApplications #SequenceModeling #MLCheatSheet #PyTorch #TensorFlow #DataScience
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค11๐3
Media is too big
VIEW IN TELEGRAM
AI vs ML vs Deep Learning vs Generative AI
๏ปฟ
#ArtificialIntelligence #MachineLearning #DeepLearning #GenerativeAI #AIVsML #AITechnology #LearnAI #AIExplained
๏ปฟ
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค8๐3๐จโ๐ป2
A curated collection of Kaggle notebooks showcasing how to build end-to-end AI applications using Hugging Face pretrained models, covering text, speech, image, and vision-language tasks โ full tutorials and code available on GitHub:
1๏ธโฃ Text-Based Applications
1.1. Building a Chatbot Using HuggingFace Open Source Models
https://lnkd.in/dku3bigK
1.2. Building a Text Translation System using Meta NLLB Open-Source Model
https://lnkd.in/dgdjaFds
2๏ธโฃ Speech-Based Applications
2.1. Zero-Shot Audio Classification Using HuggingFace CLAP Open-Source Model
https://lnkd.in/dbgQgDyn
2.2. Building & Deploying a Speech Recognition System Using the Whisper Model & Gradio
https://lnkd.in/dcbp-8fN
2.3. Building Text-to-Speech Systems Using VITS & ArTST Models
https://lnkd.in/dwFcQ_X5
3๏ธโฃ Image-Based Applications
3.1. Step-by-Step Guide to Zero-Shot Image Classification using CLIP Model
https://lnkd.in/dnk6epGB
3.2. Building an Object Detection Assistant Application: A Step-by-Step Guide
https://lnkd.in/d573SvYV
3.3. Zero-Shot Image Segmentation using Segment Anything Model (SAM)
https://lnkd.in/dFavEdHS
3.4. Building Zero-Shot Depth Estimation Application Using DPT Model & Gradio
https://lnkd.in/d9jjJu_g
4๏ธโฃ Vision Language Applications
4.1. Building a Visual Question Answering System Using Hugging Face Open-Source Models
https://lnkd.in/dHNFaHFV
4.2. Building an Image Captioning System using Salesforce Blip Model
https://lnkd.in/dh36iDn9
4.3. Building an Image-to-Text Matching System Using Hugging Face Open-Source Models
https://lnkd.in/d7fsJEAF
โก๏ธ You can find the articles and the codes for each article in this GitHub repo:
https://lnkd.in/dG5jfBwE
1๏ธโฃ Text-Based Applications
1.1. Building a Chatbot Using HuggingFace Open Source Models
https://lnkd.in/dku3bigK
1.2. Building a Text Translation System using Meta NLLB Open-Source Model
https://lnkd.in/dgdjaFds
2๏ธโฃ Speech-Based Applications
2.1. Zero-Shot Audio Classification Using HuggingFace CLAP Open-Source Model
https://lnkd.in/dbgQgDyn
2.2. Building & Deploying a Speech Recognition System Using the Whisper Model & Gradio
https://lnkd.in/dcbp-8fN
2.3. Building Text-to-Speech Systems Using VITS & ArTST Models
https://lnkd.in/dwFcQ_X5
3๏ธโฃ Image-Based Applications
3.1. Step-by-Step Guide to Zero-Shot Image Classification using CLIP Model
https://lnkd.in/dnk6epGB
3.2. Building an Object Detection Assistant Application: A Step-by-Step Guide
https://lnkd.in/d573SvYV
3.3. Zero-Shot Image Segmentation using Segment Anything Model (SAM)
https://lnkd.in/dFavEdHS
3.4. Building Zero-Shot Depth Estimation Application Using DPT Model & Gradio
https://lnkd.in/d9jjJu_g
4๏ธโฃ Vision Language Applications
4.1. Building a Visual Question Answering System Using Hugging Face Open-Source Models
https://lnkd.in/dHNFaHFV
4.2. Building an Image Captioning System using Salesforce Blip Model
https://lnkd.in/dh36iDn9
4.3. Building an Image-to-Text Matching System Using Hugging Face Open-Source Models
https://lnkd.in/d7fsJEAF
โก๏ธ You can find the articles and the codes for each article in this GitHub repo:
https://lnkd.in/dG5jfBwE
#HuggingFace #Kaggle #AIapplications #DeepLearning #MachineLearning #ComputerVision #NLP #SpeechRecognition #TextToSpeech #ImageProcessing #OpenSourceAI #ZeroShotLearning #Gradio
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค15๐ฏ1
The 2025 MIT deep learning course is excellent, covering neural networks, CNNs, RNNs, and LLMs. You build three projects for hands-on experience as part of the course. It is entirely free. Highly recommended for beginners.
Enroll Free: https://introtodeeplearning.com/
Enroll Free: https://introtodeeplearning.com/
#DeepLearning #MITCourse #NeuralNetworks #CNN #RNN #LLMs #AIForBeginners #FreeCourse #MachineLearning #IntroToDeepLearning #AIProjects #LearnAI #AI2025
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค8๐1
LLM Interview Questions.pdf
71.2 KB
Top 50 LLM Interview Questions!
#LLM #AIInterviews #MachineLearning #DeepLearning #NLP #LLMInterviewPrep #ModelArchitectures #AITheory #TechInterviews #MLBasics #InterviewQuestions #LargeLanguageModels
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค7๐ฅ3๐2
This book covers foundational topics within computer vision, with an image processing and machine learning perspective. We want to build the readerโs intuition and so we include many visualizations. The audience is undergraduate and graduate students who are entering the field, but we hope experienced practitioners will find the book valuable as well.
Our initial goal was to write a large book that provided a good coverage of the field. Unfortunately, the field of computer vision is just too large for that. So, we decided to write a small book instead, limiting each chapter to no more than five pages. Such a goal forced us to really focus on the important concepts necessary to understand each topic. Writing a short book was perfect because we did not have time to write a long book and you did not have time to read it. Unfortunately, we have failed at that goal, too.
Read it online: https://visionbook.mit.edu/
Our initial goal was to write a large book that provided a good coverage of the field. Unfortunately, the field of computer vision is just too large for that. So, we decided to write a small book instead, limiting each chapter to no more than five pages. Such a goal forced us to really focus on the important concepts necessary to understand each topic. Writing a short book was perfect because we did not have time to write a long book and you did not have time to read it. Unfortunately, we have failed at that goal, too.
Read it online: https://visionbook.mit.edu/
#ComputerVision #ImageProcessing #MachineLearning #CVBook #VisualLearning #AIResources #ComputerVisionBasics #MLForVision #AcademicResources #LearnComputerVision #AIIntuition #DeepLearning
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5
This media is not supported in your browser
VIEW IN TELEGRAM
Over the last year, several articles have been written to help candidates prepare for data science technical interviews. These resources cover a wide range of topics including machine learning, SQL, programming, statistics, and probability.
1๏ธโฃ Machine Learning (ML) Interview
Types of ML Q&A in Data Science Interview
https://shorturl.at/syN37
ML Interview Q&A for Data Scientists
https://shorturl.at/HVWY0
Crack the ML Coding Q&A
https://shorturl.at/CDW08
Deep Learning Interview Q&A
https://shorturl.at/lHPZ6
Top LLMs Interview Q&A
https://shorturl.at/wGRSZ
Top CV Interview Q&A [Part 1]
https://rb.gy/51jcfi
Part 2
https://rb.gy/hqgkbg
Part 3
https://rb.gy/5z87be
2๏ธโฃ SQL Interview Preparation
13 SQL Statements for 90% of Data Science Tasks
https://rb.gy/dkdcl1
SQL Window Functions: Simplifying Complex Queries
https://t.ly/EwSlH
Ace the SQL Questions in the Technical Interview
https://lnkd.in/gNQbYMX9
Unlocking the Power of SQL: How to Ace Top N Problem Questions
https://lnkd.in/gvxVwb9n
How To Ace the SQL Ratio Problems
https://lnkd.in/g6JQqPNA
Cracking the SQL Window Function Coding Questions
https://lnkd.in/gk5u6hnE
SQL & Database Interview Q&A
https://lnkd.in/g75DsEfw
6 Free Resources for SQL Interview Preparation
https://lnkd.in/ghhiG79Q
3๏ธโฃ Programming Questions
Foundations of Data Structures [Part 1]
https://lnkd.in/gX_ZcmRq
Part 2
https://lnkd.in/gATY4rTT
Top Important Python Questions [Conceptual]
https://lnkd.in/gJKaNww5
Top Important Python Questions [Data Cleaning and Preprocessing]
https://lnkd.in/g-pZBs3A
Top Important Python Questions [Machine & Deep Learning]
https://lnkd.in/gZwcceWN
Python Interview Q&A
https://lnkd.in/gcaXc_JE
5 Python Tips for Acing DS Coding Interview
https://lnkd.in/gsj_Hddd
4๏ธโฃ Statistics
Mastering 5 Statistics Concepts to Boost Success
https://lnkd.in/gxEuHiG5
Mastering Hypothesis Testing for Interviews
https://lnkd.in/gSBbbmF8
Introduction to A/B Testing
https://lnkd.in/g35Jihw6
Statistics Interview Q&A for Data Scientists
https://lnkd.in/geHCCt6Q
5๏ธโฃ Probability
15 Probability Concepts to Review [Part 1]
https://lnkd.in/g2rK2tQk
Part 2
https://lnkd.in/gQhXnKwJ
Probability Interview Q&A [Conceptual Questions]
https://lnkd.in/g5jyKqsp
Probability Interview Q&A [Mathematical Questions]
https://lnkd.in/gcWvPhVj
๐ All links are available in the GitHub repository:
https://lnkd.in/djcgcKRT
Types of ML Q&A in Data Science Interview
https://shorturl.at/syN37
ML Interview Q&A for Data Scientists
https://shorturl.at/HVWY0
Crack the ML Coding Q&A
https://shorturl.at/CDW08
Deep Learning Interview Q&A
https://shorturl.at/lHPZ6
Top LLMs Interview Q&A
https://shorturl.at/wGRSZ
Top CV Interview Q&A [Part 1]
https://rb.gy/51jcfi
Part 2
https://rb.gy/hqgkbg
Part 3
https://rb.gy/5z87be
13 SQL Statements for 90% of Data Science Tasks
https://rb.gy/dkdcl1
SQL Window Functions: Simplifying Complex Queries
https://t.ly/EwSlH
Ace the SQL Questions in the Technical Interview
https://lnkd.in/gNQbYMX9
Unlocking the Power of SQL: How to Ace Top N Problem Questions
https://lnkd.in/gvxVwb9n
How To Ace the SQL Ratio Problems
https://lnkd.in/g6JQqPNA
Cracking the SQL Window Function Coding Questions
https://lnkd.in/gk5u6hnE
SQL & Database Interview Q&A
https://lnkd.in/g75DsEfw
6 Free Resources for SQL Interview Preparation
https://lnkd.in/ghhiG79Q
Foundations of Data Structures [Part 1]
https://lnkd.in/gX_ZcmRq
Part 2
https://lnkd.in/gATY4rTT
Top Important Python Questions [Conceptual]
https://lnkd.in/gJKaNww5
Top Important Python Questions [Data Cleaning and Preprocessing]
https://lnkd.in/g-pZBs3A
Top Important Python Questions [Machine & Deep Learning]
https://lnkd.in/gZwcceWN
Python Interview Q&A
https://lnkd.in/gcaXc_JE
5 Python Tips for Acing DS Coding Interview
https://lnkd.in/gsj_Hddd
Mastering 5 Statistics Concepts to Boost Success
https://lnkd.in/gxEuHiG5
Mastering Hypothesis Testing for Interviews
https://lnkd.in/gSBbbmF8
Introduction to A/B Testing
https://lnkd.in/g35Jihw6
Statistics Interview Q&A for Data Scientists
https://lnkd.in/geHCCt6Q
15 Probability Concepts to Review [Part 1]
https://lnkd.in/g2rK2tQk
Part 2
https://lnkd.in/gQhXnKwJ
Probability Interview Q&A [Conceptual Questions]
https://lnkd.in/g5jyKqsp
Probability Interview Q&A [Mathematical Questions]
https://lnkd.in/gcWvPhVj
https://lnkd.in/djcgcKRT
#DataScience #InterviewPrep #MachineLearning #SQL #Python #Statistics #Probability #CodingInterview #AIBootcamp #DeepLearning #LLMs #ComputerVision #GitHubResources #CareerInDataScience
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค9๐2๐ฏ2
10 GitHub repos to build a career in AI engineering:
(100% free step-by-step roadmap)
1๏ธโฃ ML for Beginners by Microsoft
A 12-week project-based curriculum that teaches classical ML using Scikit-learn on real-world datasets.
Includes quizzes, lessons, and hands-on projects, with some videos.
GitHub repo โ https://lnkd.in/dCxStbYv
2๏ธโฃ AI for Beginners by Microsoft
This repo covers neural networks, NLP, CV, transformers, ethics & more. There are hands-on labs in PyTorch & TensorFlow using Jupyter.
Beginner-friendly, project-based, and full of real-world apps.
GitHub repo โ https://lnkd.in/dwS5Jk9E
3๏ธโฃ Neural Networks: Zero to Hero
Now that youโve grasped the foundations of AI/ML, itโs time to dive deeper.
This repo by Andrej Karpathy builds modern deep learning systems from scratch, including GPTs.
GitHub repo โ https://lnkd.in/dXAQWucq
4๏ธโฃ DL Paper Implementations
So far, you have learned the fundamentals of AI, ML, and DL. Now study how the best architectures work.
This repo covers well-documented PyTorch implementations of 60+ research papers on Transformers, GANs, Diffusion models, etc.
GitHub repo โ https://lnkd.in/dTrtDrvs
5๏ธโฃ Made With ML
Now itโs time to learn how to go from notebooks to production.
Made With ML teaches you how to design, develop, deploy, and iterate on real-world ML systems using MLOps, CI/CD, and best practices.
GitHub repo โ https://lnkd.in/dYyjjBGb
6๏ธโฃ Hands-on LLMs
- You've built neural nets.
- You've explored GPTs and LLMs.
Now apply them. This is a visually rich repo that covers everything about LLMs, like tokenization, fine-tuning, RAG, etc.
GitHub repo โ https://lnkd.in/dh2FwYFe
7๏ธโฃ Advanced RAG Techniques
Hands-on LLMs will give you a good grasp of RAG systems. Now learn advanced RAG techniques.
This repo covers 30+ methods to make RAG systems faster, smarter, and accurate, like HyDE, GraphRAG, etc.
GitHub repo โ https://lnkd.in/dBKxtX-D
8๏ธโฃ AI Agents for Beginners by Microsoft
After diving into LLMs and mastering RAG, learn how to build AI agents.
This hands-on course covers building AI agents using frameworks like AutoGen.
GitHub repo โ https://lnkd.in/dbFeuznE
9๏ธโฃ Agents Towards Production
The above course will teach what AI agents are. Next, learn how to ship them.
This is a practical playbook for building agents covering memory, orchestration, deployment, security & more.
GitHub repo โ https://lnkd.in/dcwmamSb
๐ AI Engg. Hub
To truly master LLMs, RAG, and AI agents, you need projects.
This covers 70+ real-world examples, tutorials, and agent app you can build, adapt, and ship.
GitHub repo โ https://lnkd.in/geMYm3b6
(100% free step-by-step roadmap)
A 12-week project-based curriculum that teaches classical ML using Scikit-learn on real-world datasets.
Includes quizzes, lessons, and hands-on projects, with some videos.
GitHub repo โ https://lnkd.in/dCxStbYv
This repo covers neural networks, NLP, CV, transformers, ethics & more. There are hands-on labs in PyTorch & TensorFlow using Jupyter.
Beginner-friendly, project-based, and full of real-world apps.
GitHub repo โ https://lnkd.in/dwS5Jk9E
Now that youโve grasped the foundations of AI/ML, itโs time to dive deeper.
This repo by Andrej Karpathy builds modern deep learning systems from scratch, including GPTs.
GitHub repo โ https://lnkd.in/dXAQWucq
So far, you have learned the fundamentals of AI, ML, and DL. Now study how the best architectures work.
This repo covers well-documented PyTorch implementations of 60+ research papers on Transformers, GANs, Diffusion models, etc.
GitHub repo โ https://lnkd.in/dTrtDrvs
Now itโs time to learn how to go from notebooks to production.
Made With ML teaches you how to design, develop, deploy, and iterate on real-world ML systems using MLOps, CI/CD, and best practices.
GitHub repo โ https://lnkd.in/dYyjjBGb
- You've built neural nets.
- You've explored GPTs and LLMs.
Now apply them. This is a visually rich repo that covers everything about LLMs, like tokenization, fine-tuning, RAG, etc.
GitHub repo โ https://lnkd.in/dh2FwYFe
Hands-on LLMs will give you a good grasp of RAG systems. Now learn advanced RAG techniques.
This repo covers 30+ methods to make RAG systems faster, smarter, and accurate, like HyDE, GraphRAG, etc.
GitHub repo โ https://lnkd.in/dBKxtX-D
After diving into LLMs and mastering RAG, learn how to build AI agents.
This hands-on course covers building AI agents using frameworks like AutoGen.
GitHub repo โ https://lnkd.in/dbFeuznE
The above course will teach what AI agents are. Next, learn how to ship them.
This is a practical playbook for building agents covering memory, orchestration, deployment, security & more.
GitHub repo โ https://lnkd.in/dcwmamSb
To truly master LLMs, RAG, and AI agents, you need projects.
This covers 70+ real-world examples, tutorials, and agent app you can build, adapt, and ship.
GitHub repo โ https://lnkd.in/geMYm3b6
#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค12๐ฅ1
Forwarded from Data Science Machine Learning Data Analysis
mcp guide.pdf.pdf
16.7 MB
A comprehensive PDF has been compiled that includes all MCP-related posts shared over the past six months.
(75 pages, 10+ projects & visual explainers)
Over the last half year, content has been published about the Modular Computation Protocol (MCP), which has gained significant interest and engagement from the AI community. In response to this enthusiasm, all tutorials have been gathered in one place, featuring:
* The fundamentals of MCP
* Explanations with visuals and code
* 11 hands-on projects for AI engineers
Projects included:
1. Build a 100% local MCP Client
2. MCP-powered Agentic RAG
3. MCP-powered Financial Analyst
4. MCP-powered Voice Agent
5. A Unified MCP Server
6. MCP-powered Shared Memory for Claude Desktop and Cursor
7. MCP-powered RAG over Complex Docs
8. MCP-powered Synthetic Data Generator
9. MCP-powered Deep Researcher
10. MCP-powered RAG over Videos
11. MCP-powered Audio Analysis Toolkit
(75 pages, 10+ projects & visual explainers)
Over the last half year, content has been published about the Modular Computation Protocol (MCP), which has gained significant interest and engagement from the AI community. In response to this enthusiasm, all tutorials have been gathered in one place, featuring:
* The fundamentals of MCP
* Explanations with visuals and code
* 11 hands-on projects for AI engineers
Projects included:
1. Build a 100% local MCP Client
2. MCP-powered Agentic RAG
3. MCP-powered Financial Analyst
4. MCP-powered Voice Agent
5. A Unified MCP Server
6. MCP-powered Shared Memory for Claude Desktop and Cursor
7. MCP-powered RAG over Complex Docs
8. MCP-powered Synthetic Data Generator
9. MCP-powered Deep Researcher
10. MCP-powered RAG over Videos
11. MCP-powered Audio Analysis Toolkit
#MCP #ModularComputationProtocol #AIProjects #DeepLearning #ArtificialIntelligence #RAG #VoiceAI #SyntheticData #AIAgents #AIResearch #TechWriting #OpenSourceAI #AI #python
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค13๐จโ๐ป2๐1
Auto-Encoder & Backpropagation by hand โ๏ธ lecture video ~ ๐บ https://byhand.ai/cv/10
It took me a few years to invent this method to show both forward and backward passes for a non-trivial case of a multi-layer perceptron over a batch of inputs, plus gradient descents over multiple epochs, while being able to hand calculate each step and code in Excel at the same time.
= Chapters =
โข Encoder & Decoder (00:00)
โข Equation (10:09)
โข 4-2-4 AutoEncoder (16:38)
โข 6-4-2-4-6 AutoEncoder (18:39)
โข L2 Loss (20:49)
โข L2 Loss Gradient (27:31)
โข Backpropagation (30:12)
โข Implement Backpropagation (39:00)
โข Gradient Descent (44:30)
โข Summary (51:39)
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
It took me a few years to invent this method to show both forward and backward passes for a non-trivial case of a multi-layer perceptron over a batch of inputs, plus gradient descents over multiple epochs, while being able to hand calculate each step and code in Excel at the same time.
= Chapters =
โข Encoder & Decoder (00:00)
โข Equation (10:09)
โข 4-2-4 AutoEncoder (16:38)
โข 6-4-2-4-6 AutoEncoder (18:39)
โข L2 Loss (20:49)
โข L2 Loss Gradient (27:31)
โข Backpropagation (30:12)
โข Implement Backpropagation (39:00)
โข Gradient Descent (44:30)
โข Summary (51:39)
#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5
Introduction to Deep Learning.pdf
10.5 MB
Introduction to Deep Learning
As we continue to push the boundaries of what's possible with artificial intelligence, I wanted to take a moment to share some insights on one of the most exciting fields in AI: Deep Learning.
Deep Learning is a subset of machine learning that uses neural networks to analyze and interpret data. These neural networks are designed to mimic the human brain, with layers of interconnected nodes (neurons) that process and transmit information.
What makes Deep Learning so powerful?
Ability to learn from large datasets: Deep Learning algorithms can learn from vast amounts of data, including images, speech, and text.
Improved accuracy: Deep Learning models can achieve state-of-the-art performance in tasks such as image recognition, natural language processing, and speech recognition.
Ability to generalize: Deep Learning models can generalize well to new, unseen data, making them highly effective in real-world applications.
Real-world applications of Deep Learning
Computer Vision: Self-driving cars, facial recognition, object detection
Natural Language Processing: Language translation, text summarization, sentiment analysis
Speech Recognition: Virtual assistants, voice-controlled devices.
#DeepLearning #AI #MachineLearning #NeuralNetworks #ArtificialIntelligence #DataScience #ComputerVision #NLP #SpeechRecognition #TechInnovation
As we continue to push the boundaries of what's possible with artificial intelligence, I wanted to take a moment to share some insights on one of the most exciting fields in AI: Deep Learning.
Deep Learning is a subset of machine learning that uses neural networks to analyze and interpret data. These neural networks are designed to mimic the human brain, with layers of interconnected nodes (neurons) that process and transmit information.
What makes Deep Learning so powerful?
Ability to learn from large datasets: Deep Learning algorithms can learn from vast amounts of data, including images, speech, and text.
Improved accuracy: Deep Learning models can achieve state-of-the-art performance in tasks such as image recognition, natural language processing, and speech recognition.
Ability to generalize: Deep Learning models can generalize well to new, unseen data, making them highly effective in real-world applications.
Real-world applications of Deep Learning
Computer Vision: Self-driving cars, facial recognition, object detection
Natural Language Processing: Language translation, text summarization, sentiment analysis
Speech Recognition: Virtual assistants, voice-controlled devices.
#DeepLearning #AI #MachineLearning #NeuralNetworks #ArtificialIntelligence #DataScience #ComputerVision #NLP #SpeechRecognition #TechInnovation
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค10
This media is not supported in your browser
VIEW IN TELEGRAM
GPU by hand โ๏ธ I drew this to show how a GPU speeds up an array operation of 8 elements in parallel over 4 threads in 2 clock cycles. Read more ๐
CPU
โข It has one core.
โข Its global memory has 120 locations (0-119).
โข To use the GPU, it needs to copy data from the global memory to the GPU.
โข After GPU is done, it will copy the results back.
GPU
โข It has four cores to run four threads (0-3).
โข It has a register file of 28 locations (0-27)
โข This register file has four banks (0-3).
โข All threads share the same register file.
โข But they must read/write using the four banks.
โข Each bank allows 2 reads (Read 0, Read 1) and 1 write in a single clock cycle.
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
CPU
โข It has one core.
โข Its global memory has 120 locations (0-119).
โข To use the GPU, it needs to copy data from the global memory to the GPU.
โข After GPU is done, it will copy the results back.
GPU
โข It has four cores to run four threads (0-3).
โข It has a register file of 28 locations (0-27)
โข This register file has four banks (0-3).
โข All threads share the same register file.
โข But they must read/write using the four banks.
โข Each bank allows 2 reads (Read 0, Read 1) and 1 write in a single clock cycle.
#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers
Please open Telegram to view this post
VIEW IN TELEGRAM
๐5โค3
What is torch.nn really?
This article explains it quite well.
๐ Read
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
When I started working with PyTorch, my biggest question was: "What is torch.nn?".
This article explains it quite well.
๐ Read
#pytorch #AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5
Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?
Basic Concepts (Q1โQ15)
Architecture & Components (Q16โQ30)
Attention & Transformers (Q31โQ45)
Training & Optimization (Q46โQ55)
Advanced & Real-World Applications (Q56โQ65)
Answer Key & Explanations
#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #MCQ #InterviewPrep
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5
๐ Comprehensive Guide: How to Prepare for a Graph Neural Networks (GNN) Job Interview โ 350 Most Common Interview Questions
Read: https://hackmd.io/@husseinsheikho/GNN-interview
#GNN #GraphNeuralNetworks #MachineLearning #DeepLearning #AI #DataScience #PyTorchGeometric #DGL #NodeClassification #LinkPrediction #GraphML
Read: https://hackmd.io/@husseinsheikho/GNN-interview
#GNN #GraphNeuralNetworks #MachineLearning #DeepLearning #AI #DataScience #PyTorchGeometric #DGL #NodeClassification #LinkPrediction #GraphML
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
โค8
This media is not supported in your browser
VIEW IN TELEGRAM
โ
โ
#Python #OpenCV #Automation #ML #AI #DEEPLEARNING #MACHINELEARNING #ComputerVision
Please open Telegram to view this post
VIEW IN TELEGRAM
โค8๐4๐ฏ1๐1
๐ฃ๐ฟ๐ฒ๐ฝ๐ฎ๐ฟ๐ฒ ๐ณ๐ผ๐ฟ ๐๐ผ๐ฏ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐.
In DS or AI/ML interviews, you need to be able to explain models, debug them live, and design AI/ML systems from scratch. If you canโt demonstrate this during an interview, expect to hear, โWeโll get back to you.โ
The attached person's name is Chip Huyen. Hopefully you know her; if not, then I can't help you here. She is probably one of the finest authors in the field of AI/ML.
She designed proper documentation/a book for common ML interview questions.
Target Audiences: ML engineer, a platform engineer, a research scientist, or you want to do ML but donโt yet know the differences among those titles.Check the comment section for links and repos.
๐ link:
https://huyenchip.com/ml-interviews-book/
๏ปฟ
https://t.me/CodeProgrammer๐
In DS or AI/ML interviews, you need to be able to explain models, debug them live, and design AI/ML systems from scratch. If you canโt demonstrate this during an interview, expect to hear, โWeโll get back to you.โ
The attached person's name is Chip Huyen. Hopefully you know her; if not, then I can't help you here. She is probably one of the finest authors in the field of AI/ML.
She designed proper documentation/a book for common ML interview questions.
Target Audiences: ML engineer, a platform engineer, a research scientist, or you want to do ML but donโt yet know the differences among those titles.Check the comment section for links and repos.
https://huyenchip.com/ml-interviews-book/
#JobInterview #MachineLearning #AI #DataScience #MLEngineer #AIInterview #TechCareers #DeepLearning #AICommunity #MLSystems #CareerGrowth #AIJobs #ChipHuyen #InterviewPrep #DataScienceCommunit
๏ปฟ
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3๐ฏ2