Introduction to Machine Learning” by Alex Smola and S.V.N.
Vishwanathan is a foundational textbook that offers a comprehensive and mathematically rigorous introduction to core concepts in machine learning. The book covers key topics including supervised and unsupervised learning, kernels, graphical models, optimization techniques, and large-scale learning. It balances theory and practical application, making it ideal for graduate students, researchers, and professionals aiming to deepen their understanding of machine learning fundamentals and algorithmic principles.
PDF:
https://alex.smola.org/drafts/thebook.pdf
Vishwanathan is a foundational textbook that offers a comprehensive and mathematically rigorous introduction to core concepts in machine learning. The book covers key topics including supervised and unsupervised learning, kernels, graphical models, optimization techniques, and large-scale learning. It balances theory and practical application, making it ideal for graduate students, researchers, and professionals aiming to deepen their understanding of machine learning fundamentals and algorithmic principles.
PDF:
https://alex.smola.org/drafts/thebook.pdf
#MachineLearning #AI #DataScience #MLAlgorithms #DeepLearning #MathForML #MLTheory #MLResearch #AlexSmola #SVNVishwanathan
👍4❤1
Machine Learning Notes 📝 (1).pdf
4.9 MB
Machine Learning Notes with Real Project and Amazing discussion
https://t.me/CodeProgrammer🌟
#MachineLearning #AI #DataScience #MLAlgorithms #DeepLearning
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6💯4
These 9 courses covers LLMs, Agents, Deep RL, Audio and more
https://huggingface.co/learn/llm-course/chapter1/1
https://huggingface.co/learn/agents-course/unit0/introduction
https://huggingface.co/learn/deep-rl-course/unit0/introduction
https://huggingface.co/learn/cookbook/index
https://huggingface.co/learn/ml-games-course/unit0/introduction
https://huggingface.co/learn/audio-course/chapter0/introduction
https://huggingface.co/learn/computer-vision-course/unit0/welcome/welcome
https://huggingface.co/learn/ml-for-3d-course/unit0/introduction
https://huggingface.co/learn/diffusion-course/unit0/1
#HuggingFace #FreeCourses #AI #MachineLearning #DeepLearning #LLM #Agents #ReinforcementLearning #AudioAI #ComputerVision #3DAI #DiffusionModels #OpenSourceAI
Join to our WhatsApp
https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤3
@codeprogrammer machine learning notes.pdf
21 MB
Best Machine Learning Notes
Join to our WhatsApp📱 channel:
https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
#HuggingFace #FreeCourses #AI #MachineLearning #DeepLearning #LLM #Agents #python #PythonProgramming #ReinforcementLearning #AudioAI #ComputerVision #3DAI #DiffusionModels #OpenSourceAI
Join to our WhatsApp
https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10🔥1
9 machine learning concepts for ML engineers!
(explained as visually as possible)
Here's a recap of several visual summaries posted in the Daily Dose of Data Science newsletter.
1️⃣ 4 strategies for Multi-GPU Training.
- Training at scale? Learn these strategies to maximize efficiency and minimize model training time.
- Read here: https://lnkd.in/gmXF_PgZ
2️⃣ 4 ways to test models in production
- While testing a model in production might sound risky, ML teams do it all the time, and it isn’t that complicated.
- Implemented here: https://lnkd.in/g33mASMM
3️⃣ Training & inference time complexity of 10 ML algorithms
Understanding the run time of ML algorithms is important because it helps you:
- Build a core understanding of an algorithm.
- Understand the data-specific conditions to use the algorithm
- Read here: https://lnkd.in/gKJwJ__m
4️⃣ Regression & Classification Loss Functions.
- Get a quick overview of the most important loss functions and when to use them.
- Read here: https://lnkd.in/gzFPBh-H
5️⃣ Transfer Learning, Fine-tuning, Multitask Learning, and Federated Learning.
- The holy grail of advanced learning paradigms, explained visually.
- Learn about them here: https://lnkd.in/g2hm8TMT
6️⃣ 15 Pandas to Polars to SQL to PySpark Translations.
- The visual will help you build familiarity with four popular frameworks for data analysis and processing.
- Read here: https://lnkd.in/gP-cqjND
7️⃣ 11 most important plots in data science
- A must-have visual guide to interpret and communicate your data effectively.
- Explained here: https://lnkd.in/geMt98tF
8️⃣ 11 types of variables in a dataset
Understand and categorize dataset variables for better feature engineering.
- Explained here: https://lnkd.in/gQxMhb_p
9️⃣ NumPy cheat sheet for data scientists
- The ultimate cheat sheet for fast, efficient numerical computing in Python.
- Read here: https://lnkd.in/gbF7cJJE
🔗 Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
(explained as visually as possible)
Here's a recap of several visual summaries posted in the Daily Dose of Data Science newsletter.
- Training at scale? Learn these strategies to maximize efficiency and minimize model training time.
- Read here: https://lnkd.in/gmXF_PgZ
- While testing a model in production might sound risky, ML teams do it all the time, and it isn’t that complicated.
- Implemented here: https://lnkd.in/g33mASMM
Understanding the run time of ML algorithms is important because it helps you:
- Build a core understanding of an algorithm.
- Understand the data-specific conditions to use the algorithm
- Read here: https://lnkd.in/gKJwJ__m
- Get a quick overview of the most important loss functions and when to use them.
- Read here: https://lnkd.in/gzFPBh-H
- The holy grail of advanced learning paradigms, explained visually.
- Learn about them here: https://lnkd.in/g2hm8TMT
- The visual will help you build familiarity with four popular frameworks for data analysis and processing.
- Read here: https://lnkd.in/gP-cqjND
- A must-have visual guide to interpret and communicate your data effectively.
- Explained here: https://lnkd.in/geMt98tF
Understand and categorize dataset variables for better feature engineering.
- Explained here: https://lnkd.in/gQxMhb_p
- The ultimate cheat sheet for fast, efficient numerical computing in Python.
- Read here: https://lnkd.in/gbF7cJJE
#MachineLearning #DataScience #MLEngineering #DeepLearning #AI #MLOps #BigData #Python #NumPy #Pandas #Visualization
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍8💯1
Numpy from basics to advanced.pdf
2.4 MB
NumPy is an essential library in the world of data science, widely recognized for its efficiency in numerical computations and data manipulation. This powerful tool simplifies complex operations with arrays, offering a faster and cleaner alternative to traditional Python lists and loops.
The "Mastering NumPy" booklet provides a comprehensive walkthrough—from array creation and indexing to mathematical/statistical operations and advanced topics like reshaping and stacking. All concepts are illustrated with clear, beginner-friendly examples, making it ideal for anyone aiming to boost their data handling skills.
#NumPy #Python #DataScience #MachineLearning #AI #BigData #DeepLearning #DataAnalysis
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12💯5🏆4❤1👾1
deep learning book.pdf
14.5 MB
#DeepLearning #AI #MachineLearning #LearnAI #DeepLearningForBeginners
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤2💯1
#DataScience #HowToBecomeADataScientist #ML2025 #Python #SQL #MachineLearning #MathForDataScience #BigData #MLOps #DeepLearning #AIResearch #DataVisualization #PortfolioProjects #CloudComputing #DSCareerPath
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤13👍5🔥1
Anyone trying to deeply understand Large Language Models.
Checkout
by Tong Xiao & Jingbo Zhu. It’s one of the clearest, most comprehensive resource.
⭐️ Paper Link: arxiv.org/pdf/2501.09223
Checkout
Foundations of Large Language Models
by Tong Xiao & Jingbo Zhu. It’s one of the clearest, most comprehensive resource.
#LLMs #LargeLanguageModels #AIResearch #DeepLearning #MachineLearning #AIResources #NLP #AITheory #FoundationModels #AIUnderstanding
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤14
Self-attention in LLMs, clearly explained
#SelfAttention #LLMs #Transformers #NLP #DeepLearning #MachineLearning #AIExplained #AttentionMechanism #AIConcepts #AIEducation
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8💯2👨💻1
👨🏻💻 Real learning means implementing ideas and building prototypes. It's time to skip the repetitive training and get straight to real data science projects!
┌
└
#DataScience #PythonProjects #MachineLearning #DeepLearning #AIProjects #RealWorldData #OpenSource #DataAnalysis #ProjectBasedLearning #LearnByBuilding
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9👍1💯1🆒1
rnn.pdf
5.6 MB
🔍 Understanding Recurrent Neural Networks (RNNs) Cheat Sheet!
Recurrent Neural Networks are a powerful type of neural network designed to handle sequential data. They are widely used in applications like natural language processing, speech recognition, and time-series prediction. Here's a quick cheat sheet to get you started:
📘 Key Concepts:
Sequential Data: RNNs are designed to process sequences of data, making them ideal for tasks where order matters.
Hidden State: Maintains information from previous inputs, enabling memory across time steps.
Backpropagation Through Time (BPTT): The method used to train RNNs by unrolling the network through time.
🔧 Common Variants:
Long Short-Term Memory (LSTM): Addresses vanishing gradient problems with gates to manage information flow.
Gated Recurrent Unit (GRU): Similar to LSTMs but with a simpler architecture.
🚀 Applications:
Language Modeling: Predicting the next word in a sentence.
Sentiment Analysis: Understanding sentiments in text.
Time-Series Forecasting: Predicting future data points in a series.
🔗 Resources:
Dive deeper with tutorials on platforms like Coursera, edX, or YouTube.
Explore open-source libraries like TensorFlow or PyTorch for implementation.
Let's harness the power of RNNs to innovate and solve complex problems!💡
Recurrent Neural Networks are a powerful type of neural network designed to handle sequential data. They are widely used in applications like natural language processing, speech recognition, and time-series prediction. Here's a quick cheat sheet to get you started:
📘 Key Concepts:
Sequential Data: RNNs are designed to process sequences of data, making them ideal for tasks where order matters.
Hidden State: Maintains information from previous inputs, enabling memory across time steps.
Backpropagation Through Time (BPTT): The method used to train RNNs by unrolling the network through time.
🔧 Common Variants:
Long Short-Term Memory (LSTM): Addresses vanishing gradient problems with gates to manage information flow.
Gated Recurrent Unit (GRU): Similar to LSTMs but with a simpler architecture.
🚀 Applications:
Language Modeling: Predicting the next word in a sentence.
Sentiment Analysis: Understanding sentiments in text.
Time-Series Forecasting: Predicting future data points in a series.
🔗 Resources:
Dive deeper with tutorials on platforms like Coursera, edX, or YouTube.
Explore open-source libraries like TensorFlow or PyTorch for implementation.
Let's harness the power of RNNs to innovate and solve complex problems!
#RNN #RecurrentNeuralNetworks #DeepLearning #NLP #LSTM #GRU #TimeSeriesForecasting #MachineLearning #NeuralNetworks #AIApplications #SequenceModeling #MLCheatSheet #PyTorch #TensorFlow #DataScience
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11👍3
Media is too big
VIEW IN TELEGRAM
AI vs ML vs Deep Learning vs Generative AI
#ArtificialIntelligence #MachineLearning #DeepLearning #GenerativeAI #AIVsML #AITechnology #LearnAI #AIExplained
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7👍3👨💻2
A curated collection of Kaggle notebooks showcasing how to build end-to-end AI applications using Hugging Face pretrained models, covering text, speech, image, and vision-language tasks — full tutorials and code available on GitHub:
1️⃣ Text-Based Applications
1.1. Building a Chatbot Using HuggingFace Open Source Models
https://lnkd.in/dku3bigK
1.2. Building a Text Translation System using Meta NLLB Open-Source Model
https://lnkd.in/dgdjaFds
2️⃣ Speech-Based Applications
2.1. Zero-Shot Audio Classification Using HuggingFace CLAP Open-Source Model
https://lnkd.in/dbgQgDyn
2.2. Building & Deploying a Speech Recognition System Using the Whisper Model & Gradio
https://lnkd.in/dcbp-8fN
2.3. Building Text-to-Speech Systems Using VITS & ArTST Models
https://lnkd.in/dwFcQ_X5
3️⃣ Image-Based Applications
3.1. Step-by-Step Guide to Zero-Shot Image Classification using CLIP Model
https://lnkd.in/dnk6epGB
3.2. Building an Object Detection Assistant Application: A Step-by-Step Guide
https://lnkd.in/d573SvYV
3.3. Zero-Shot Image Segmentation using Segment Anything Model (SAM)
https://lnkd.in/dFavEdHS
3.4. Building Zero-Shot Depth Estimation Application Using DPT Model & Gradio
https://lnkd.in/d9jjJu_g
4️⃣ Vision Language Applications
4.1. Building a Visual Question Answering System Using Hugging Face Open-Source Models
https://lnkd.in/dHNFaHFV
4.2. Building an Image Captioning System using Salesforce Blip Model
https://lnkd.in/dh36iDn9
4.3. Building an Image-to-Text Matching System Using Hugging Face Open-Source Models
https://lnkd.in/d7fsJEAF
➡️ You can find the articles and the codes for each article in this GitHub repo:
https://lnkd.in/dG5jfBwE
1️⃣ Text-Based Applications
1.1. Building a Chatbot Using HuggingFace Open Source Models
https://lnkd.in/dku3bigK
1.2. Building a Text Translation System using Meta NLLB Open-Source Model
https://lnkd.in/dgdjaFds
2️⃣ Speech-Based Applications
2.1. Zero-Shot Audio Classification Using HuggingFace CLAP Open-Source Model
https://lnkd.in/dbgQgDyn
2.2. Building & Deploying a Speech Recognition System Using the Whisper Model & Gradio
https://lnkd.in/dcbp-8fN
2.3. Building Text-to-Speech Systems Using VITS & ArTST Models
https://lnkd.in/dwFcQ_X5
3️⃣ Image-Based Applications
3.1. Step-by-Step Guide to Zero-Shot Image Classification using CLIP Model
https://lnkd.in/dnk6epGB
3.2. Building an Object Detection Assistant Application: A Step-by-Step Guide
https://lnkd.in/d573SvYV
3.3. Zero-Shot Image Segmentation using Segment Anything Model (SAM)
https://lnkd.in/dFavEdHS
3.4. Building Zero-Shot Depth Estimation Application Using DPT Model & Gradio
https://lnkd.in/d9jjJu_g
4️⃣ Vision Language Applications
4.1. Building a Visual Question Answering System Using Hugging Face Open-Source Models
https://lnkd.in/dHNFaHFV
4.2. Building an Image Captioning System using Salesforce Blip Model
https://lnkd.in/dh36iDn9
4.3. Building an Image-to-Text Matching System Using Hugging Face Open-Source Models
https://lnkd.in/d7fsJEAF
➡️ You can find the articles and the codes for each article in this GitHub repo:
https://lnkd.in/dG5jfBwE
#HuggingFace #Kaggle #AIapplications #DeepLearning #MachineLearning #ComputerVision #NLP #SpeechRecognition #TextToSpeech #ImageProcessing #OpenSourceAI #ZeroShotLearning #Gradio
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤13💯1
The 2025 MIT deep learning course is excellent, covering neural networks, CNNs, RNNs, and LLMs. You build three projects for hands-on experience as part of the course. It is entirely free. Highly recommended for beginners.
Enroll Free: https://introtodeeplearning.com/
Enroll Free: https://introtodeeplearning.com/
#DeepLearning #MITCourse #NeuralNetworks #CNN #RNN #LLMs #AIForBeginners #FreeCourse #MachineLearning #IntroToDeepLearning #AIProjects #LearnAI #AI2025
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7
LLM Interview Questions.pdf
71.2 KB
Top 50 LLM Interview Questions!
#LLM #AIInterviews #MachineLearning #DeepLearning #NLP #LLMInterviewPrep #ModelArchitectures #AITheory #TechInterviews #MLBasics #InterviewQuestions #LargeLanguageModels
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7🔥3👍2