Python | Machine Learning | Coding | R
62K subscribers
1.12K photos
67 videos
140 files
768 links
List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

Discover powerful insights with Python, Machine Learning, Coding, and Rโ€”your essential toolkit for data-driven solutions, smart alg

Help and ads: @hussein_sheikho

https://telega.io/?r=nikapsOH
Download Telegram
Master Machine Learning in Just 20 Days.1745724742524
30.8 MB
Title:
Master Machine Learning in Just 20 Days - Your Ultimate Guide! ๐Ÿ”ฅ

Description:
Struggling to break into Data Science or ace ML interviews at top product-based companies?

This 20-day roadmap covers ML basics to advanced topics like tuning, deep learning, and deployment with top resources and practice questions!

Whatโ€™s Inside:

โœ… Supervised & Unsupervised Learning โ€“ Regression, Classification, Clustering
โœ… Deep Learning & Neural Networks โ€“ CNNs, RNNs, LSTMs
โœ… End-to-End ML Projects โ€“ Data Preprocessing, Feature Engineering, Deployment
โœ… Model Optimization โ€“ Hyperparameter Tuning, Ensemble Methods
โœ… Real-World ML Applications โ€“ NLP, AutoML, Scalable ML Systems

#MachineLearning #DeepLearning #DataScience #ArtificialIntelligence #MLEngineering #CareerGrowth #MLRoadmap

By: t.me/HusseinSheikho โœ…

๐Ÿ’ฏ BEST DATA SCIENCE CHANNELS ON TELEGRAM ๐ŸŒŸ
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from ENG. Hussein Sheikho
ูุฑุตุฉ ุนู…ู„ ุนู† ุจุนุฏ ๐Ÿง‘โ€๐Ÿ’ป
ู„ุง ูŠุชุทู„ุจ ุงูŠ ู…ุคู‡ู„ ุงูˆ ุฎุจุฑู‡ ุงู„ุดุฑูƒู‡ ุชู‚ุฏู… ุชุฏุฑูŠุจ ูƒุงู…ู„ โœจ
ุณุงุนุงุช ุงู„ุนู…ู„ ู…ุฑู†ู‡  โฐ
ูŠุชู… ุงู„ุชุณุฌูŠู„ ุซู… ุงู„ุชูˆุงุตู„ ู…ุนูƒ ู„ุญุถูˆุฑ ู„ู‚ุงุก ุชุนุฑูŠููŠ ุจุงู„ุนู…ู„ ูˆุงู„ุดุฑูƒู‡

https://forms.gle/hqUZXu7u4uLjEDPv8
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Python Courses
๐Ÿš€ LunaProxy - The Most Cost-effective Residential Proxy Exclusive Benefits for Members of This Group: ๐Ÿ’ฅ Residential Proxy: As low as $0.77 / GB. Use the discount code [lunapro30] when placing an order and save 30% immediately. โœ”๏ธ Over 200 million pure IPs | No charge for invalid ones | Success rate > 99.9% ๐Ÿ’ฅ Unlimited Traffic Proxy: Enjoy a discount of up to 72%, only $79 / day. โœ”๏ธ Unlimited traffic | Unlimited concurrency | Bandwidth of over 100Gbps | Customized services | Save 90% of the cost when collecting AI/LLM data Join the Luna Affiliate Program and earn a 10% commission. There is no upper limit for the commission, and you can withdraw it at any time.
๐Ÿ‘‰ Take action now: https://www.lunaproxy.com/?ls=data&lk=?01
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
The price of promoting a post on our channel (permanent post on our channel) is $15.

We accept personal or business promotions.

Contact @HusseinSheikho
Please open Telegram to view this post
VIEW IN TELEGRAM
Four best-advanced university courses on NLP & LLM to advance your skills:

1. Advanced NLP -- Carnegie Mellon University
Link: https://lnkd.in/ddEtMghr

2. Recent Advances on Foundation Models -- University of Waterloo
Link: https://lnkd.in/dbdpUV9v

3. Large Language Model Agents -- University of California, Berkeley
Link: https://lnkd.in/d-MdSM8Y

4. Advanced LLM Agent -- University Berkeley
Link: https://lnkd.in/dvCD4HR4

#LLM #python #AI #Agents #RAG #NLP

๐Ÿ’ฏ BEST DATA SCIENCE CHANNELS ON TELEGRAM ๐ŸŒŸ
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ”ด Comprehensive course on "Data Mining"
๐Ÿ–ฅ Carnegie Mellon University, USA


๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ป Carnegie University in the United States has come to offer a free #datamining course in 25 lectures to those interested in this field.

โ—€๏ธ In this course, you will deal with statistical concepts and model selection methods on the one hand, and on the other hand, you will have to implement these concepts in practice and present the results.

โ—€๏ธ The exercises are both combined: theory, #coding, and practical.๐Ÿ‘‡


โ”Œ ๐Ÿฅต Data Mining
โ””โฏ๏ธ Course Homepage

๐Ÿ’ฏ BEST DATA SCIENCE CHANNELS ON TELEGRAM ๐ŸŒŸ
Please open Telegram to view this post
VIEW IN TELEGRAM
This channels is for Programmers, Coders, Software Engineers.

0๏ธโƒฃ Python
1๏ธโƒฃ Data Science
2๏ธโƒฃ Machine Learning
3๏ธโƒฃ Data Visualization
4๏ธโƒฃ Artificial Intelligence
5๏ธโƒฃ Data Analysis
6๏ธโƒฃ Statistics
7๏ธโƒฃ Deep Learning
8๏ธโƒฃ programming Languages

โœ… https://t.me/addlist/8_rRW2scgfRhOTc0

โœ… https://t.me/Codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
Full PyTorch Implementation of Transformer-XL

If you're looking to understand and experiment with Transformer-XL using PyTorch, this resource provides a clean and complete implementation. Transformer-XL is a powerful model that extends the Transformer architecture with recurrence, enabling learning dependencies beyond fixed-length segments.

The implementation is ideal for researchers, students, and developers aiming to dive deeper into advanced language modeling techniques.

Explore the code and start building:
https://www.k-a.in/pyt-transformerXL.html

#TransformerXL #PyTorch #DeepLearning #NLP #LanguageModeling #AI #MachineLearning #OpenSource #ResearchTools

https://t.me/CodeProgrammer
LLM Engineerโ€™s Handbook (2024)

๐Ÿš€ Unlock the Future of AI with the LLM Engineerโ€™s Handbook ๐Ÿš€

Step into the world of Large Language Models (LLMs) with this comprehensive guide that takes you from foundational concepts to deploying advanced applications using LLMOps best practices. Whether you're an AI engineer, NLP professional, or LLM enthusiast, this book offers practical insights into designing, training, and deploying LLMs in real-world scenarios.

Why Choose the LLM Engineerโ€™s Handbook?

Comprehensive Coverage: Learn about data engineering, supervised fine-tuning, and deployment strategies.

Hands-On Approach: Implement MLOps components through practical examples, including building an LLM-powered twin that's cost-effective, scalable, and modular.

Cutting-Edge Techniques: Explore inference optimization, preference alignment, and real-time data processing to apply LLMs effectively in your projects.

Real-World Applications: Move beyond isolated Jupyter notebooks and focus on building production-grade end-to-end LLM systems.


Limited-Time Offer

Originally priced at $55, the LLM Engineerโ€™s Handbook is now available for just $25โ€”a 55% discount! This special offer is available for a limited quantity, so act fast to secure your copy.

Who Should Read This Book?

This handbook is ideal for AI engineers, NLP professionals, and LLM engineers looking to deepen their understanding of LLMs. A basic knowledge of LLMs, Python, and AWS is recommended. Whether you're new to AI or seeking to enhance your skills, this book provides comprehensive guidance on implementing LLMs in real-world scenarios.

Don't miss this opportunity to advance your expertise in LLM engineering. Secure your discounted copy today and take the next step in your AI journey!

Buy book: https://www.patreon.com/DataScienceBooks/shop/llm-engineers-handbook-2024-1582908
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Keep up with the latest developments in artificial intelligence and Python through our WhatsApp channel. The resources will be diverse and of great importance. We strive to make our WhatsApp channel the number one channel in the world of artificial intelligence.

Tell your friends
https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
๐Š-๐Œ๐ž๐š๐ง๐ฌ ๐‚๐ฅ๐ฎ๐ฌ๐ญ๐ž๐ซ๐ข๐ง๐  ๐„๐ฑ๐ฉ๐ฅ๐š๐ข๐ง๐ž๐ - ๐Ÿ๐จ๐ซ ๐›๐ž๐ ๐ข๐ง๐ง๐ž๐ซ๐ฌ

๐–๐ก๐š๐ญ ๐ข๐ฌ ๐Š-๐Œ๐ž๐š๐ง๐ฌ?
Itโ€™s an unsupervised machine learning algorithm that automatically groups your data into K similar clusters without labels. It finds hidden patterns using distance-based similarity.

๐ˆ๐ง๐ญ๐ฎ๐ข๐ญ๐ข๐ฏ๐ž ๐ž๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž:
You run a mall. Your data has:
โ€บ Age
โ€บ Annual Income
โ€บ Spending Score

K-Means can divide customers into:
โคท Budget Shoppers
โคท Mid-Range Customers
โคท High-End Spenders

๐‡๐จ๐ฐ ๐ข๐ญ ๐ฐ๐จ๐ซ๐ค๐ฌ:
โ‘  Choose the number of clusters K
โ‘ก Randomly initialize K centroids
โ‘ข Assign each point to its nearest centroid
โ‘ฃ Move centroids to the mean of their assigned points
โ‘ค Repeat until centroids donโ€™t move (convergence)

๐Ž๐›๐ฃ๐ž๐œ๐ญ๐ข๐ฏ๐ž:
Minimize the total squared distance between data points and their cluster centroids
๐‰ = ฮฃโ€–๐ฑแตข - ฮผโฑผโ€–ยฒ
Where ๐ฑแตข = data point, ฮผโฑผ = cluster center

๐‡๐จ๐ฐ ๐ญ๐จ ๐ฉ๐ข๐œ๐ค ๐Š:
Use the Elbow Method
โคท Plot K vs. total within-cluster variance
โคท The โ€œelbowโ€ in the curve = ideal number of clusters

๐‚๐จ๐๐ž ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž (๐’๐œ๐ข๐ค๐ข๐ญ-๐‹๐ž๐š๐ซ๐ง):

from sklearn.cluster import KMeans
X = [[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]]
model = KMeans(n_clusters=2, random_state=0)
model.fit(X)
print(model.labels_)
print(model.cluster_centers_)


๐๐ž๐ฌ๐ญ ๐”๐ฌ๐ž ๐‚๐š๐ฌ๐ž๐ฌ:
โคท Customer segmentation
โคท Image compression
โคท Market analysis
โคท Social network analysis

๐‹๐ข๐ฆ๐ข๐ญ๐š๐ญ๐ข๐จ๐ง๐ฌ:
โ€บ Sensitive to outliers
โ€บ Requires you to predefine K
โ€บ Works best with spherical clusters

https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A ๐Ÿ“ฑ
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
๐—ฃ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ (๐—ฃ๐—–๐—”)
๐—ง๐—ต๐—ฒ ๐—”๐—ฟ๐˜ ๐—ผ๐—ณ ๐—ฅ๐—ฒ๐—ฑ๐˜‚๐—ฐ๐—ถ๐—ป๐—ด ๐——๐—ถ๐—บ๐—ฒ๐—ป๐˜€๐—ถ๐—ผ๐—ป๐˜€ ๐—ช๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐—Ÿ๐—ผ๐˜€๐—ถ๐—ป๐—ด ๐—œ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜๐˜€

๐—ช๐—ต๐—ฎ๐˜ ๐—˜๐˜…๐—ฎ๐—ฐ๐˜๐—น๐˜† ๐—œ๐˜€ ๐—ฃ๐—–๐—”?
โคท ๐—ฃ๐—–๐—” is a ๐—บ๐—ฎ๐˜๐—ต๐—ฒ๐—บ๐—ฎ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐˜๐—ฒ๐—ฐ๐—ต๐—ป๐—ถ๐—พ๐˜‚๐—ฒ used to transform a ๐—ต๐—ถ๐—ด๐—ต-๐—ฑ๐—ถ๐—บ๐—ฒ๐—ป๐˜€๐—ถ๐—ผ๐—ป๐—ฎ๐—น dataset into fewer dimensions, while retaining as much ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜† (๐—ถ๐—ป๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) as possible.
โคท Think of it as โ€œ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ดโ€ data, similar to how we reduce the size of an image without losing too much detail.

๐—ช๐—ต๐˜† ๐—จ๐˜€๐—ฒ ๐—ฃ๐—–๐—” ๐—ถ๐—ป ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€?
โคท ๐—ฆ๐—ถ๐—บ๐—ฝ๐—น๐—ถ๐—ณ๐˜† your data for ๐—ฒ๐—ฎ๐˜€๐—ถ๐—ฒ๐—ฟ ๐—ฎ๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ and ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐—ถ๐—ป๐—ด
โคท ๐—˜๐—ป๐—ต๐—ฎ๐—ป๐—ฐ๐—ฒ machine learning models by reducing ๐—ฐ๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—ฐ๐—ผ๐˜€๐˜
โคท ๐—ฉ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฒ multi-dimensional data in 2๐—— or 3๐—— for insights
โคท ๐—™๐—ถ๐—น๐˜๐—ฒ๐—ฟ ๐—ผ๐˜‚๐˜ ๐—ป๐—ผ๐—ถ๐˜€๐—ฒ and uncover hidden patterns in your data

๐—ง๐—ต๐—ฒ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—ผ๐—ณ ๐—ฃ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€
โคท The ๐—ณ๐—ถ๐—ฟ๐˜€๐˜ ๐—ฝ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜ is the direction in which the data varies the most.
โคท Each subsequent component represents the ๐—ป๐—ฒ๐˜…๐˜ ๐—ต๐—ถ๐—ด๐—ต๐—ฒ๐˜€๐˜ ๐—ฟ๐—ฎ๐˜๐—ฒ of variance, but is ๐—ผ๐—ฟ๐˜๐—ต๐—ผ๐—ด๐—ผ๐—ป๐—ฎ๐—น (๐˜‚๐—ป๐—ฐ๐—ผ๐—ฟ๐—ฟ๐—ฒ๐—น๐—ฎ๐˜๐—ฒ๐—ฑ) to the previous one.
โคท The challenge is selecting how many components to keep based on the ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ป๐—ฐ๐—ฒ they explain.

๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ

1: ๐—–๐˜‚๐˜€๐˜๐—ผ๐—บ๐—ฒ๐—ฟ ๐—ฆ๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Imagine youโ€™re working on a project to ๐˜€๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜ customers for a marketing campaign, with data on spending habits, age, income, and location.
โคท Using ๐—ฃ๐—–๐—”, you can reduce these four variables into just ๐˜๐˜„๐—ผ ๐—ฝ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€ that retain 90% of the variance.
โคท These two new components can then be used for ๐—ธ-๐—บ๐—ฒ๐—ฎ๐—ป๐˜€ clustering to identify distinct customer groups without dealing with the complexity of all the original variables.

๐—ง๐—ต๐—ฒ ๐—ฃ๐—–๐—” ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€ โ€” ๐—ฆ๐˜๐—ฒ๐—ฝ-๐—•๐˜†-๐—ฆ๐˜๐—ฒ๐—ฝ
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿญ: ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐˜๐—ฎ๐—ป๐—ฑ๐—ฎ๐—ฟ๐—ฑ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Ensure your data is on the same scale (e.g., mean = 0, variance = 1).
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฎ: ๐—–๐—ผ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐— ๐—ฎ๐˜๐—ฟ๐—ถ๐˜…
Calculate how features are correlated.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฏ: ๐—˜๐—ถ๐—ด๐—ฒ๐—ป ๐——๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป
Compute the eigenvectors and eigenvalues to determine the principal components.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฐ: ๐—ฆ๐—ฒ๐—น๐—ฒ๐—ฐ๐˜ ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€
Choose the top-k components based on the explained variance ratio.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฑ: ๐——๐—ฎ๐˜๐—ฎ ๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Transform your data onto the new ๐—ฃ๐—–๐—” space with fewer dimensions.

๐—ช๐—ต๐—ฒ๐—ป ๐—ก๐—ผ๐˜ ๐˜๐—ผ ๐—จ๐˜€๐—ฒ ๐—ฃ๐—–๐—”
โคท ๐—ฃ๐—–๐—” is not suitable when the dataset contains ๐—ป๐—ผ๐—ป-๐—น๐—ถ๐—ป๐—ฒ๐—ฎ๐—ฟ ๐—ฟ๐—ฒ๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€๐—ต๐—ถ๐—ฝ๐˜€ or ๐—ต๐—ถ๐—ด๐—ต๐—น๐˜† ๐˜€๐—ธ๐—ฒ๐˜„๐—ฒ๐—ฑ ๐—ฑ๐—ฎ๐˜๐—ฎ.
โคท For non-linear data, consider ๐—ง-๐—ฆ๐—ก๐—˜ or ๐—ฎ๐˜‚๐˜๐—ผ๐—ฒ๐—ป๐—ฐ๐—ผ๐—ฑ๐—ฒ๐—ฟ๐˜€ instead.

https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A ๐Ÿ“ฑ
Please open Telegram to view this post
VIEW IN TELEGRAM
๐ŸŽ Your balance is credited $4,000 , the owner of the channel wants to contact you!

Dear subscriber, we would like to thank you very much for supporting our channel, and as a token of our gratitude we would like to provide you with free access to Lisa's investor channel, with the help of which you can earn today

T.me/Lisainvestor

Be sure to take advantage of our gift, admission is free, don't miss the opportunity, change your life for the better.

You can follow the link :
https://t.me/+0DQSCADFTUA3N2Qx