carbon - 2023-08-08T115041.994.png
1.3 MB
π Python Mouse Control Remotely With Your Hand.
βͺ Source Code: https://gist.github.com/Develp10/3d605ce6ef017fdfc3e66e147ec9cc18
https://t.me/CodeProgrammer
βͺ Source Code: https://gist.github.com/Develp10/3d605ce6ef017fdfc3e66e147ec9cc18
https://t.me/CodeProgrammer
π₯ Importing Data from SQL Server to Excel with Multiple Sheets using Python
π Source Code: https://github.com/danis111/Importing-Data-from-SQL-Server-to-Excel-with-Multiple-Sheets-using-Python/tree/main
https://t.me/CodeProgrammer
More reaction please π
π Source Code: https://github.com/danis111/Importing-Data-from-SQL-Server-to-Excel-with-Multiple-Sheets-using-Python/tree/main
https://t.me/CodeProgrammer
More reaction please π
π¨βπHarvard CS50βs Artificial Intelligence with Python β Full University Course
This free course from Harvard University explores the concepts and algorithms behind modern artificial intelligence.
π Video: https://www.youtube.com/watch?v=5NgNicANyqM
π Course resources: https://cs50.harvard.edu/ai/2020/
https://t.me/CodeProgrammer
More reaction please π
This free course from Harvard University explores the concepts and algorithms behind modern artificial intelligence.
π Video: https://www.youtube.com/watch?v=5NgNicANyqM
π Course resources: https://cs50.harvard.edu/ai/2020/
https://t.me/CodeProgrammer
More reaction please π
π 9 must-have Python developer tools.
1. PyCharm IDE
2. Jupyter notebook
3. Keras
4. Pip Package
5. Python Anywhere
6. Scikit-Learn
7. Sphinx
8. Selenium
9. Sublime Text
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
1. PyCharm IDE
2. Jupyter notebook
3. Keras
4. Pip Package
5. Python Anywhere
6. Scikit-Learn
7. Sphinx
8. Selenium
9. Sublime Text
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
β‘ Top 100+ Machine Learning Projects for 2023 [with Source Code]
In this article, you will find 100+ of the best machine learning projects and ideas that will be useful for both beginners and experienced professionals.
πProjects: https://www.geeksforgeeks.org/machine-learning-projects/
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
In this article, you will find 100+ of the best machine learning projects and ideas that will be useful for both beginners and experienced professionals.
πProjects: https://www.geeksforgeeks.org/machine-learning-projects/
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
How to Train an Object Detection Model with Keras
https://machinelearningmastery.com/how-to-train-an-object-detection-model-with-keras/
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
https://machinelearningmastery.com/how-to-train-an-object-detection-model-with-keras/
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
π±ββοΈ Creating Face Swaps with Python and OpenCV
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
π±ββοΈ Creating Face Swaps with Python and OpenCV
Step 1: Face Detection
Step 2: Swapping Faces
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
Step 1: Face Detection
import cv2
def detect_face(image_path):
# Load the face detection classifier
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# Read and convert the image to grayscale
image = cv2.imread(image_path)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect faces in the image
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5)
# Assuming there's only one face in the image, return its coordinates
if len(faces) == 1:
return faces[0]
else:
return None
Step 2: Swapping Faces
def main():
# Paths to the input images
image_path_1 = 'path_to_image1.jpg'
image_path_2 = 'path_to_image2.jpg'
# Detect the face in the second image
face_coords_2 = detect_face(image_path_2)
if face_coords_2 is None:
print("No face found in the second image.")
return
# Load and resize the source face
image_1 = cv2.imread(image_path_1)
face_width, face_height = face_coords_2[2], face_coords_2[3]
image_1_resized = cv2.resize(image_1, (face_width, face_height))
# Extract the target face region from the second image
image_2 = cv2.imread(image_path_2)
roi = image_2[face_coords_2[1]:face_coords_2[1] + face_height, face_coords_2[0]:face_coords_2[0] + face_width]
# Flip the target face horizontally
reflected_roi = cv2.flip(roi, 1)
# Blend the two faces together
alpha = 0.7
blended_image = cv2.addWeighted(image_1_resized, alpha, reflected_roi, 1 - alpha, 0)
# Replace the target face region with the blended image
image_2[face_coords_2[1]:face_coords_2[1] + face_height, face_coords_2[0]:face_coords_2[0] + face_width] = blended_image
# Display the result
cv2.imshow('Blended Image', image_2)
cv2.waitKey(0)
cv2.destroyAllWindows()
if name == "main":
main()
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
Your First Deep Learning Project in Python with Keras Step-by-Step
https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
Python | Machine Learning | Coding | R
π₯ Text-to-Speech with PyTorch https://t.me/CodeProgrammer
π₯ Text-to-Speech with PyTorch
import torchaudio
import torch
import matplotlib.pyplot as plt
import IPython.display
bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH
processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device) # Move model to the desired device
vocoder = bundle.get_vocoder().to(device) # Move model to the desired device
text = " My first text to speech!"
with torch.inference_mode():
processed, lengths = processor(text)
processed = processed.to(device) # Move processed text data to the device
lengths = lengths.to(device) # Move lengths data to the device
spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
waveforms, lengths = vocoder(spec, spec_lengths)
fig, [ax1, ax2] = plt.subplots(2, 1, figsize=(16, 9))
ax1.imshow(spec[0].cpu().detach(), origin="lower", aspect="auto") # Display the generated spectrogram
ax2.plot(waveforms[0].cpu().detach()) # Display the generated waveform7. Play the generated audio using IPython.display.Audio
IPython.display.Audio(waveforms[0:1].cpu(), rate=vocoder.sample_rate)
https://t.me/CodeProgrammerBest-of Python
π A ranked list of awesome Python open-source libraries & tools. Updated weekly.
βͺ Github: https://github.com/ml-tooling/best-of-python
https://t.me/CodeProgrammer
More reaction. please βοΈπβοΈ
π A ranked list of awesome Python open-source libraries & tools. Updated weekly.
βͺ Github: https://github.com/ml-tooling/best-of-python
https://t.me/CodeProgrammer
More reaction. please βοΈπβοΈ
π₯ 5 useful Python automation scripts
1. Download Youtube videos
2. Automate WhatsApp messages
3. Google search with Python
4. Download Instagram posts
5. Extract audio from video files
https://t.me/CodeProgrammer
1. Download Youtube videos
pip install pytube
from pytube import YouTube
# Specify the URL of the YouTube video
video_url = "https://www.youtube.com/watch?v=dQw4w9WgXcQ"
# Create a YouTube object
yt = YouTube(video_url)
# Select the highest resolution stream
stream = yt.streams.get_highest_resolution()
# Define the output path for the downloaded video
output_path = "path/to/output/directory/"
# Download the video
stream.download(output_path)
print("Video downloaded successfully!")
2. Automate WhatsApp messages
pip install pywhatkit
import pywhatkit
# Set the target phone number (with country code) and the message
phone_number = "+1234567890"
message = "Hello, this is an automated WhatsApp message!"
# Schedule the message to be sent at a specific time (24-hour format)
hour = 13
minute = 30
# Send the scheduled message
pywhatkit.sendwhatmsg(phone_number, message, hour, minute)
3. Google search with Python
pip install googlesearch-python
from googlesearch import search
# Define the query you want to search
query = "Python programming"
# Specify the number of search results you want to retrieve
num_results = 5
# Perform the search and retrieve the results
search_results = search(query, num_results=num_results, lang='en')
# Print the search results
for result in search_results:
print(result)
4. Download Instagram posts
pip install instaloader
import instaloader
# Create an instance of Instaloader
loader = instaloader.Instaloader()
# Define the target Instagram profile
target_profile = "instagram"
# Download posts from the profile
loader.download_profile(target_profile, profile_pic=False, fast_update=True)
print("Posts downloaded successfully!")
5. Extract audio from video files
pip install moviepy
from moviepy.editor import VideoFileClip
# Define the path to the video file
video_path = "path/to/video/file.mp4"
# Create a VideoFileClip object
video_clip = VideoFileClip(video_path)
# Extract the audio from the video
audio_clip = video_clip.audio
# Define the output audio file path
output_audio_path = "path/to/output/audio/file.mp3"
# Write the audio to the output file
audio_clip.write_audiofile(output_audio_path)
# Close the clips
video_clip.close()
audio_clip.close()
print("Audio extracted successfully!")
https://t.me/CodeProgrammer
π Daily Useful Scripts
Daily.py is a repository that provides a collection of ready-to-use Python scripts for automating common daily tasks.
βͺ Github: https://github.com/Chamepp/Daily.py
https://t.me/CodeProgrammer
Daily.py is a repository that provides a collection of ready-to-use Python scripts for automating common daily tasks.
git clone https://github.com/Chamepp/Daily.py.git
βͺ Github: https://github.com/Chamepp/Daily.py
https://t.me/CodeProgrammer
Introduction to Python
What Youβll Learn:
β’ Installing a Python environment
β’ The basics of the Python language
https://realpython.com/learning-paths/python3-introduction/
https://t.me/CodeProgrammer
Learn fundamental concepts for Python beginners that will help you get started on your journey to learn Python. These tutorials focus on the absolutely essential things you need to know about Python.
What Youβll Learn:
β’ Installing a Python environment
β’ The basics of the Python language
https://realpython.com/learning-paths/python3-introduction/
https://t.me/CodeProgrammer
Flask by Example
Youβre going to start building a Flask app that calculates word-frequency pairs based on the text from a given URL. This is a full-stack tutorial covering a number of web development techniques. Jump right in and discover the basics of Python web development with the Flask microframework.
https://realpython.com/learning-paths/flask-by-example/
https://t.me/CodeProgrammer
Youβre going to start building a Flask app that calculates word-frequency pairs based on the text from a given URL. This is a full-stack tutorial covering a number of web development techniques. Jump right in and discover the basics of Python web development with the Flask microframework.
https://realpython.com/learning-paths/flask-by-example/
https://t.me/CodeProgrammer
Python | Machine Learning | Coding | R
πβπ¨ Running YOLOv7 algorithm on your webcam using Ikomia API
πβπ¨ Running YOLOv7 algorithm on your webcam using Ikomia API
https://t.me/CodeProgrammer
from ikomia.dataprocess.workflow import Workflow
from ikomia.utils import ik
from ikomia.utils.displayIO import display
import cv2
stream = cv2.VideoCapture(0)
# Init the workflow
wf = Workflow()
# Add color conversion
cvt = wf.add_task(ik.ocv_color_conversion(code=str(cv2.COLOR_BGR2RGB)), auto_connect=True)
# Add YOLOv7 detection
yolo = wf.add_task(ik.infer_yolo_v7(conf_thres="0.7"), auto_connect=True)
while True:
ret, frame = stream.read()
# Test if streaming is OK
if not ret:
continue
# Run workflow on image
wf.run_on(frame)
# Display results from "yolo"
display(
yolo.get_image_with_graphics(),
title="Object Detection - press 'q' to quit",
viewer="opencv"
)
# Press 'q' to quit the streaming process
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# After the loop release the stream object
stream.release()
# Destroy all windows
cv2.destroyAllWindows()
https://t.me/CodeProgrammer
This media is not supported in your browser
VIEW IN TELEGRAM
π¦ Code Llama
The most powerful AI assistant for writing Python code.
β’ Github: https://github.com/facebookresearch/codellama
β’ Docs: https://ai.meta.com/blog/code-llama-large-language-model-coding/
β’ Post: https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://t.me/CodeProgrammer
The most powerful AI assistant for writing Python code.
β’ Github: https://github.com/facebookresearch/codellama
β’ Docs: https://ai.meta.com/blog/code-llama-large-language-model-coding/
β’ Post: https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://t.me/CodeProgrammer