π₯ 8 delightful Python scripts that will brighten your day
8 cool python scripts to brighten up your day .
These little gems will add some fun to your programming projects.
1. Speed ββtest
2. Convert photo to cartoon format
3. Site status output
4. Image enhancement
5. Creating a web bot
6. Conversion: Hex to RGB
7. Convert PDF to images
8. Get song lyrics
https://t.me/CodeProgrammer
8 cool python scripts to brighten up your day .
These little gems will add some fun to your programming projects.
1. Speed ββtest
2. Convert photo to cartoon format
3. Site status output
4. Image enhancement
5. Creating a web bot
6. Conversion: Hex to RGB
7. Convert PDF to images
8. Get song lyrics
https://t.me/CodeProgrammer
35 Best+FREE Coursera Courses for Data Science and Machine Learning!
https://www.mltut.com/best-coursera-courses-for-data-science/
https://t.me/CodeProgrammer
https://www.mltut.com/best-coursera-courses-for-data-science/
https://t.me/CodeProgrammer
carbon - 2023-08-08T115041.994.png
1.3 MB
π Python Mouse Control Remotely With Your Hand.
βͺ Source Code: https://gist.github.com/Develp10/3d605ce6ef017fdfc3e66e147ec9cc18
https://t.me/CodeProgrammer
βͺ Source Code: https://gist.github.com/Develp10/3d605ce6ef017fdfc3e66e147ec9cc18
https://t.me/CodeProgrammer
π₯ Importing Data from SQL Server to Excel with Multiple Sheets using Python
π Source Code: https://github.com/danis111/Importing-Data-from-SQL-Server-to-Excel-with-Multiple-Sheets-using-Python/tree/main
https://t.me/CodeProgrammer
More reaction please π
π Source Code: https://github.com/danis111/Importing-Data-from-SQL-Server-to-Excel-with-Multiple-Sheets-using-Python/tree/main
https://t.me/CodeProgrammer
More reaction please π
π¨βπHarvard CS50βs Artificial Intelligence with Python β Full University Course
This free course from Harvard University explores the concepts and algorithms behind modern artificial intelligence.
π Video: https://www.youtube.com/watch?v=5NgNicANyqM
π Course resources: https://cs50.harvard.edu/ai/2020/
https://t.me/CodeProgrammer
More reaction please π
This free course from Harvard University explores the concepts and algorithms behind modern artificial intelligence.
π Video: https://www.youtube.com/watch?v=5NgNicANyqM
π Course resources: https://cs50.harvard.edu/ai/2020/
https://t.me/CodeProgrammer
More reaction please π
π 9 must-have Python developer tools.
1. PyCharm IDE
2. Jupyter notebook
3. Keras
4. Pip Package
5. Python Anywhere
6. Scikit-Learn
7. Sphinx
8. Selenium
9. Sublime Text
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
1. PyCharm IDE
2. Jupyter notebook
3. Keras
4. Pip Package
5. Python Anywhere
6. Scikit-Learn
7. Sphinx
8. Selenium
9. Sublime Text
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
β‘ Top 100+ Machine Learning Projects for 2023 [with Source Code]
In this article, you will find 100+ of the best machine learning projects and ideas that will be useful for both beginners and experienced professionals.
πProjects: https://www.geeksforgeeks.org/machine-learning-projects/
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
In this article, you will find 100+ of the best machine learning projects and ideas that will be useful for both beginners and experienced professionals.
πProjects: https://www.geeksforgeeks.org/machine-learning-projects/
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
How to Train an Object Detection Model with Keras
https://machinelearningmastery.com/how-to-train-an-object-detection-model-with-keras/
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
https://machinelearningmastery.com/how-to-train-an-object-detection-model-with-keras/
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
π±ββοΈ Creating Face Swaps with Python and OpenCV
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
π±ββοΈ Creating Face Swaps with Python and OpenCV
Step 1: Face Detection
Step 2: Swapping Faces
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
Step 1: Face Detection
import cv2
def detect_face(image_path):
# Load the face detection classifier
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# Read and convert the image to grayscale
image = cv2.imread(image_path)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect faces in the image
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5)
# Assuming there's only one face in the image, return its coordinates
if len(faces) == 1:
return faces[0]
else:
return None
Step 2: Swapping Faces
def main():
# Paths to the input images
image_path_1 = 'path_to_image1.jpg'
image_path_2 = 'path_to_image2.jpg'
# Detect the face in the second image
face_coords_2 = detect_face(image_path_2)
if face_coords_2 is None:
print("No face found in the second image.")
return
# Load and resize the source face
image_1 = cv2.imread(image_path_1)
face_width, face_height = face_coords_2[2], face_coords_2[3]
image_1_resized = cv2.resize(image_1, (face_width, face_height))
# Extract the target face region from the second image
image_2 = cv2.imread(image_path_2)
roi = image_2[face_coords_2[1]:face_coords_2[1] + face_height, face_coords_2[0]:face_coords_2[0] + face_width]
# Flip the target face horizontally
reflected_roi = cv2.flip(roi, 1)
# Blend the two faces together
alpha = 0.7
blended_image = cv2.addWeighted(image_1_resized, alpha, reflected_roi, 1 - alpha, 0)
# Replace the target face region with the blended image
image_2[face_coords_2[1]:face_coords_2[1] + face_height, face_coords_2[0]:face_coords_2[0] + face_width] = blended_image
# Display the result
cv2.imshow('Blended Image', image_2)
cv2.waitKey(0)
cv2.destroyAllWindows()
if name == "main":
main()
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
Your First Deep Learning Project in Python with Keras Step-by-Step
https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
https://t.me/CodeProgrammer
More reaction please βοΈπβοΈ
Python | Machine Learning | Coding | R
π₯ Text-to-Speech with PyTorch https://t.me/CodeProgrammer
π₯ Text-to-Speech with PyTorch
import torchaudio
import torch
import matplotlib.pyplot as plt
import IPython.display
bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH
processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device) # Move model to the desired device
vocoder = bundle.get_vocoder().to(device) # Move model to the desired device
text = " My first text to speech!"
with torch.inference_mode():
processed, lengths = processor(text)
processed = processed.to(device) # Move processed text data to the device
lengths = lengths.to(device) # Move lengths data to the device
spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
waveforms, lengths = vocoder(spec, spec_lengths)
fig, [ax1, ax2] = plt.subplots(2, 1, figsize=(16, 9))
ax1.imshow(spec[0].cpu().detach(), origin="lower", aspect="auto") # Display the generated spectrogram
ax2.plot(waveforms[0].cpu().detach()) # Display the generated waveform7. Play the generated audio using IPython.display.Audio
IPython.display.Audio(waveforms[0:1].cpu(), rate=vocoder.sample_rate)
https://t.me/CodeProgrammerBest-of Python
π A ranked list of awesome Python open-source libraries & tools. Updated weekly.
βͺ Github: https://github.com/ml-tooling/best-of-python
https://t.me/CodeProgrammer
More reaction. please βοΈπβοΈ
π A ranked list of awesome Python open-source libraries & tools. Updated weekly.
βͺ Github: https://github.com/ml-tooling/best-of-python
https://t.me/CodeProgrammer
More reaction. please βοΈπβοΈ
π₯ 5 useful Python automation scripts
1. Download Youtube videos
2. Automate WhatsApp messages
3. Google search with Python
4. Download Instagram posts
5. Extract audio from video files
https://t.me/CodeProgrammer
1. Download Youtube videos
pip install pytube
from pytube import YouTube
# Specify the URL of the YouTube video
video_url = "https://www.youtube.com/watch?v=dQw4w9WgXcQ"
# Create a YouTube object
yt = YouTube(video_url)
# Select the highest resolution stream
stream = yt.streams.get_highest_resolution()
# Define the output path for the downloaded video
output_path = "path/to/output/directory/"
# Download the video
stream.download(output_path)
print("Video downloaded successfully!")
2. Automate WhatsApp messages
pip install pywhatkit
import pywhatkit
# Set the target phone number (with country code) and the message
phone_number = "+1234567890"
message = "Hello, this is an automated WhatsApp message!"
# Schedule the message to be sent at a specific time (24-hour format)
hour = 13
minute = 30
# Send the scheduled message
pywhatkit.sendwhatmsg(phone_number, message, hour, minute)
3. Google search with Python
pip install googlesearch-python
from googlesearch import search
# Define the query you want to search
query = "Python programming"
# Specify the number of search results you want to retrieve
num_results = 5
# Perform the search and retrieve the results
search_results = search(query, num_results=num_results, lang='en')
# Print the search results
for result in search_results:
print(result)
4. Download Instagram posts
pip install instaloader
import instaloader
# Create an instance of Instaloader
loader = instaloader.Instaloader()
# Define the target Instagram profile
target_profile = "instagram"
# Download posts from the profile
loader.download_profile(target_profile, profile_pic=False, fast_update=True)
print("Posts downloaded successfully!")
5. Extract audio from video files
pip install moviepy
from moviepy.editor import VideoFileClip
# Define the path to the video file
video_path = "path/to/video/file.mp4"
# Create a VideoFileClip object
video_clip = VideoFileClip(video_path)
# Extract the audio from the video
audio_clip = video_clip.audio
# Define the output audio file path
output_audio_path = "path/to/output/audio/file.mp3"
# Write the audio to the output file
audio_clip.write_audiofile(output_audio_path)
# Close the clips
video_clip.close()
audio_clip.close()
print("Audio extracted successfully!")
https://t.me/CodeProgrammer