🖥 Unraveling the Magic of Sorting: A Python Guide for Novices
▪Bubble Sort
▪Selection Sort
▪Insertion Sort
https://t.me/CodeProgrammer
▪Bubble Sort
def bubble_sort(list):
for i in range(len(list)):
for j in range(len(list) - 1):
if list[j] > list[j + 1]:
list[j], list[j + 1] = list[j + 1], list[j] # swap
return list
▪Selection Sort
def selection_sort(list):
for i in range(len(list)):
min_index = i
for j in range(i + 1, len(list)):
if list[min_index] > list[j]:
min_index = j
list[i], list[min_index] = list[min_index], list[i] # swap
return list
▪Insertion Sort
def insertion_sort(list):
for i in range(1, len(list)):
key = list[i]
j = i - 1
while j >=0 and key < list[j] :
list[j+1] = list[j]
j -= 1
list[j+1] = key
return list
▪Quick Sortdef partition(array, low, high):
i = (low-1)
pivot = array[high]
for j in range(low, high):
if array[j] <= pivot:
i = i+1
array[i], array[j] = array[j], array[i]
array[i+1], array[high] = array[high], array[i+1]
return (i+1)
def quick_sort(array, low, high):
if len(array) == 1:
return array
if low < high:
partition_index = partition(array, low, high)
quick_sort(array, low, partition_index-1)
quick_sort(array, partition_index+1, high)
https://t.me/CodeProgrammer
NumPy Tutorial: Your First Steps Into Data Science in Python
https://realpython.com/numpy-tutorial
https://t.me/CodeProgrammer
https://realpython.com/numpy-tutorial
https://t.me/CodeProgrammer
Building an Image Recognition API using Flask.
Step 1: Set up the project environment
1. Create a new directory for your project and navigate to it.
2. Create a virtual environment (optional but recommended):
(Image 1.)
3. Install the necessary libraries (image 2.)
Step 2: Create a Flask Web Application
Create a new file called app.py in the project directory (image 3.)
Step 3: Launch the Flask Application
Save the changes and run the Flask application (image 4.)
Step 4: Test the API
Your API is now up and running and you can send images to /predict via HTTP POST requests.
You can use tools such as curl or Postman to test the API.
• An example of using curl (image 5.)
• An example using Python queries (image 6.)
https://t.me/DataScienceT
Step 1: Set up the project environment
1. Create a new directory for your project and navigate to it.
2. Create a virtual environment (optional but recommended):
(Image 1.)
3. Install the necessary libraries (image 2.)
Step 2: Create a Flask Web Application
Create a new file called app.py in the project directory (image 3.)
Step 3: Launch the Flask Application
Save the changes and run the Flask application (image 4.)
Step 4: Test the API
Your API is now up and running and you can send images to /predict via HTTP POST requests.
You can use tools such as curl or Postman to test the API.
• An example of using curl (image 5.)
• An example using Python queries (image 6.)
https://t.me/DataScienceT
📩 Python Email Automation Script
https://t.me/DataScienceT
import smtplib
from email.mime.text import MIMEText
sender_email = "your_email@example.com"
recipient_email = "recipient_email@example.com"
subject = "Automated Email"
message = "This is an automated email sent using Python."
# SMTP server configuration (example: Gmail)
smtp_server = "smtp.gmail.com"
smtp_port = 587
smtp_username = "your_username"
smtp_password = "your_password"
msg = MIMEText(message)
msg["Subject"] = subject
msg["From"] = sender_email
msg["To"] = recipient_email
try:
server = smtplib.SMTP(smtp_server, smtp_port)
server.starttls()
server.login(smtp_username, smtp_password)
server.sendmail(sender_email, recipient_email, msg.as_string())
print("Email sent successfully!")
except Exception as e:
print("Error sending email:", str(e))
finally:
server.quit()
https://t.me/DataScienceT
Customize the Django Admin With Python
https://realpython.com/customize-django-admin-python/
https://t.me/CodeProgrammer
https://realpython.com/customize-django-admin-python/
https://t.me/CodeProgrammer
Follow us in threads
https://www.threads.net/@pythonsy
https://www.threads.net/@pythonsy
We launched a special bot some time ago to download all scientific, software and mathematics books The bot contains more than thirty million books, and new books are downloaded first, In addition to the possibility of downloading all articles and scientific papers for free
To request a subscription: talk to @Hussein_Sheikho
To request a subscription: talk to @Hussein_Sheikho
Generative Adversarial Networks
https://realpython.com/generative-adversarial-networks
https://t.me/CodeProgrammer
https://realpython.com/generative-adversarial-networks
https://t.me/CodeProgrammer
Important book
50 Algorithms Every Programmer Should Know (2023)
Read it
https://t.me/DataScienceM/286
50 Algorithms Every Programmer Should Know (2023)
Read it
https://t.me/DataScienceM/286
Telegram
Data Science Machine Learning Data Analysis Books
📚 50 Algorithms Every Programmer Should Know (2023)
1⃣ Join Channel Download:
https://t.me/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.me/c/1854405158/148
💬 Tags: #Algorithms
USEFUL CHANNELS FOR YOU
1⃣ Join Channel Download:
https://t.me/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.me/c/1854405158/148
💬 Tags: #Algorithms
USEFUL CHANNELS FOR YOU
A gentle introduction to K-Means Clustering in #R.
Featuring Tidyclust
https://www.business-science.io/code-tools/2023/07/06/kmeans-clustering.html
https://t.me/CodeProgrammer
Featuring Tidyclust
https://www.business-science.io/code-tools/2023/07/06/kmeans-clustering.html
https://t.me/CodeProgrammer
Django Roadmap
Link 1: https://github.com/HHHMHA/django-roadmap
Link 2:
https://github.com/faresemad/Django-Roadmap
Share this roadmap for your friends
https://t.me/CodeProgrammer
Link 1: https://github.com/HHHMHA/django-roadmap
Link 2:
https://github.com/faresemad/Django-Roadmap
Share this roadmap for your friends
https://t.me/CodeProgrammer
Forwarded from Eng. Hussein Sheikho 👨💻
This channels is for Programmers, Coders, Software Engineers.
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
✅ https://t.me/addlist/8_rRW2scgfRhOTc0
✅ https://t.me/DataScienceM
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
✅ https://t.me/addlist/8_rRW2scgfRhOTc0
✅ https://t.me/DataScienceM
🚀 Python code that can send WhatsApp messages, send emails, and send SMS messages to a number.
https://t.me/CodeProgrammer
https://t.me/CodeProgrammer
machinelearningAIDeep_resume.pdf
45.4 MB
Cheat Sheets for AI Neural Networks, Machine Learning, DeepLearning & Big Data
💐 Please React ♥️, Share
https://t.me/DataScienceM
New channel 👆👆👆👆👆👆
💐 Please React ♥️, Share
https://t.me/DataScienceM
New channel 👆👆👆👆👆👆
Forwarded from Data Science Machine Learning Data Analysis Books
Machine Learning with Python (2023)
This book is available now only in paid channel
Cost of Paid channel is 5$ for one time and forever
Paid channel contain important book and udemy and other courses as zip files
Welcome all
Contact @Hussein_sheikho
This book is available now only in paid channel
Cost of Paid channel is 5$ for one time and forever
Paid channel contain important book and udemy and other courses as zip files
Welcome all
Contact @Hussein_sheikho