Python | Machine Learning | Coding | R
62.2K subscribers
1.12K photos
67 videos
141 files
774 links
List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

Help and ads: @hussein_sheikho

https://telega.io/?r=nikapsOH
Download Telegram
How to Make a Twitter Bot in Python With Tweepy

https://realpython.com/twitter-bot-python-tweepy/

More ♥️♥️ = more posts

@CodeProgrammer ♥️
Understanding Simple Recurrent Neural Networks in Keras

https://machinelearningmastery.com/understanding-simple-recurrent-neural-networks-in-keras/

More ♥️♥️ = more posts

@CodeProgrammer ♥️
Python Docker Tutorials

Docker is a containerization tool used for spinning up isolated, reproducible application environments. It is a popular development tool for Python developers.

https://realpython.com/tutorials/docker/
The Transformer Attention Mechanism

https://machinelearningmastery.com/the-transformer-attention-mechanism/

More ♥️♥️ = more posts

@CodeProgrammer ♥️
This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning

https://t.me/DataScienceM
https://t.me/DataScienceM
This channels is for Programmers, Coders, Software Engineers.

0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages

https://t.me/addlist/8_rRW2scgfRhOTc0
🖥 10 Advanced Python Scripts For Everyday Programming

1. SpeedTest with Python
# pip install pyspeedtest
# pip install speedtest
# pip install speedtest-cli

#method 1
import speedtest

speedTest = speedtest.Speedtest()
print(speedTest.get_best_server())

#Check download speed
print(speedTest.download())

#Check upload speed
print(speedTest.upload())

# Method 2

import pyspeedtest
st = pyspeedtest.SpeedTest()
st.ping()
st.download()
st.upload()

2. Search on Google

# pip install google

from googlesearch import search

query = "Medium.com"

for url in search(query):
print(url)


3. Make Web Bot
# pip install selenium

import time
from selenium import webdriver
from selenium.webdriver.common.keys import Keys

bot = webdriver.Chrome("chromedriver.exe")
bot.get('[http://www.google.com'](http://www.google.com'))

search = bot.find_element_by_name('q')
search.send_keys("@codedev101")
search.send_keys(Keys.RETURN)
time.sleep(5)
bot.quit()


4. Fetch Song Lyrics
# pip install lyricsgenius

import lyricsgenius

api_key = "xxxxxxxxxxxxxxxxxxxxx"

genius = lyricsgenius.Genius(api_key)
artist = genius.search_artist("Pop Smoke", max_songs=5,sort="title")
song = artist.song("100k On a Coupe")

print(song.lyrics)


5. Get Exif Data of Photos
# Get Exif of Photo

# Method 1
# pip install pillow
import PIL.Image
import PIL.ExifTags

img = PIL.Image.open("Img.jpg")
exif_data =
{
PIL.ExifTags.TAGS[i]: j
for i, j in img._getexif().items()
if i in PIL.ExifTags.TAGS
}
print(exif_data)


# Method 2
# pip install ExifRead
import exifread

filename = open(path_name, 'rb')

tags = exifread.process_file(filename)
print(tags)


6. OCR Text from Image
# pip install pytesseract

import pytesseract
from PIL import Image

pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'

t=Image.open("img.png")
text = pytesseract.image_to_string(t, config='')

print(text)


7. Convert Photo into Cartonize

# pip install opencv-python

import cv2

img = cv2.imread('img.jpg')
grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
grayimg = cv2.medianBlur(grayimg, 5)

edges = cv2.Laplacian(grayimg , cv2.CV_8U, ksize=5)
r,mask =cv2.threshold(edges,100,255,cv2.THRESH_BINARY_INV)

img2 = cv2.bitwise_and(img, img, mask=mask)
img2 = cv2.medianBlur(img2, 5)

cv2.imwrite("cartooned.jpg", mask)


8. Empty Recycle Bin
# pip install winshell

import winshell
try:
winshell.recycle_bin().empty(confirm=False, /show_progress=False, sound=True)
print("Recycle bin is emptied Now")
except:
print("Recycle bin already empty")


9. Python Image Enhancement
# pip install pillow

from PIL import Image,ImageFilter
from PIL import ImageEnhance

im = Image.open('img.jpg')

# Choose your filter
# add Hastag at start if you don't want to any filter below

en = ImageEnhance.Color(im)
en = ImageEnhance.Contrast(im)
en = ImageEnhance.Brightness(im)
en = ImageEnhance.Sharpness(im)

# result
en.enhance(1.5).show("enhanced")


10. Get Window Version
# Window Version

import wmi
data = wmi.WMI()
for os_name in data.Win32_OperatingSystem():
print(os_name.Caption) # Microsoft Windows 11 Home


https://t.me/DataScienceT
🖥 Unraveling the Magic of Sorting: A Python Guide for Novices

Bubble Sort

def bubble_sort(list):
for i in range(len(list)):
for j in range(len(list) - 1):
if list[j] > list[j + 1]:
list[j], list[j + 1] = list[j + 1], list[j] # swap
return list


Selection Sort

def selection_sort(list):
for i in range(len(list)):
min_index = i
for j in range(i + 1, len(list)):
if list[min_index] > list[j]:
min_index = j
list[i], list[min_index] = list[min_index], list[i] # swap
return list


Insertion Sort

def insertion_sort(list):
for i in range(1, len(list)):
key = list[i]
j = i - 1
while j >=0 and key < list[j] :
list[j+1] = list[j]
j -= 1
list[j+1] = key
return list

Quick Sort

def partition(array, low, high):
i = (low-1)
pivot = array[high]

for j in range(low, high):
if array[j] <= pivot:
i = i+1
array[i], array[j] = array[j], array[i]
array[i+1], array[high] = array[high], array[i+1]
return (i+1)

def quick_sort(array, low, high):
if len(array) == 1:
return array
if low < high:
partition_index = partition(array, low, high)
quick_sort(array, low, partition_index-1)
quick_sort(array, partition_index+1, high)

https://t.me/CodeProgrammer
NumPy Tutorial: Your First Steps Into Data Science in Python

https://realpython.com/numpy-tutorial

https://t.me/CodeProgrammer
Building an Image Recognition API using Flask.

Step 1: Set up the project environment

1. Create a new directory for your project and navigate to it.
2. Create a virtual environment (optional but recommended):
(Image 1.)
3. Install the necessary libraries (image 2.)

Step 2: Create a Flask Web Application
Create a new file called app.py in the project directory (image 3.)

Step 3: Launch the Flask Application
Save the changes and run the Flask application (image 4.)

Step 4: Test the API
Your API is now up and running and you can send images to /predict via HTTP POST requests.
You can use tools such as curl or Postman to test the API.
• An example of using curl (image 5.)
• An example using Python queries (image 6.)

https://t.me/DataScienceT
📩 Python Email Automation Script

import smtplib
from email.mime.text import MIMEText


sender_email = "your_email@example.com"
recipient_email = "recipient_email@example.com"

subject = "Automated Email"
message = "This is an automated email sent using Python."


# SMTP server configuration (example: Gmail)


smtp_server = "smtp.gmail.com"
smtp_port = 587
smtp_username = "your_username"
smtp_password = "your_password"



msg = MIMEText(message)
msg["Subject"] = subject
msg["From"] = sender_email
msg["To"] = recipient_email
try:

server = smtplib.SMTP(smtp_server, smtp_port)
server.starttls()
server.login(smtp_username, smtp_password)
server.sendmail(sender_email, recipient_email, msg.as_string())
print("Email sent successfully!")

except Exception as e:
print("Error sending email:", str(e))

finally:

server.quit()

https://t.me/DataScienceT
We launched a special bot some time ago to download all scientific, software and mathematics books The bot contains more than thirty million books, and new books are downloaded first, In addition to the possibility of downloading all articles and scientific papers for free

To request a subscription: talk to @Hussein_Sheikho