Python | Machine Learning | Coding | R
62.2K subscribers
1.12K photos
67 videos
141 files
774 links
List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

Help and ads: @hussein_sheikho

https://telega.io/?r=nikapsOH
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
The source code for DragGAN has been released! 🔥🔥🔥

We can finally play with that marvel!

🔗 GitHub repository: https://github.com/XingangPan/DragGAN

https://t.me/DataScienceT
How to Make a Twitter Bot in Python With Tweepy

https://realpython.com/twitter-bot-python-tweepy/

More ♥️♥️ = more posts

@CodeProgrammer ♥️
Understanding Simple Recurrent Neural Networks in Keras

https://machinelearningmastery.com/understanding-simple-recurrent-neural-networks-in-keras/

More ♥️♥️ = more posts

@CodeProgrammer ♥️
Python Docker Tutorials

Docker is a containerization tool used for spinning up isolated, reproducible application environments. It is a popular development tool for Python developers.

https://realpython.com/tutorials/docker/
The Transformer Attention Mechanism

https://machinelearningmastery.com/the-transformer-attention-mechanism/

More ♥️♥️ = more posts

@CodeProgrammer ♥️
This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning

https://t.me/DataScienceM
https://t.me/DataScienceM
This channels is for Programmers, Coders, Software Engineers.

0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages

https://t.me/addlist/8_rRW2scgfRhOTc0
🖥 10 Advanced Python Scripts For Everyday Programming

1. SpeedTest with Python
# pip install pyspeedtest
# pip install speedtest
# pip install speedtest-cli

#method 1
import speedtest

speedTest = speedtest.Speedtest()
print(speedTest.get_best_server())

#Check download speed
print(speedTest.download())

#Check upload speed
print(speedTest.upload())

# Method 2

import pyspeedtest
st = pyspeedtest.SpeedTest()
st.ping()
st.download()
st.upload()

2. Search on Google

# pip install google

from googlesearch import search

query = "Medium.com"

for url in search(query):
print(url)


3. Make Web Bot
# pip install selenium

import time
from selenium import webdriver
from selenium.webdriver.common.keys import Keys

bot = webdriver.Chrome("chromedriver.exe")
bot.get('[http://www.google.com'](http://www.google.com'))

search = bot.find_element_by_name('q')
search.send_keys("@codedev101")
search.send_keys(Keys.RETURN)
time.sleep(5)
bot.quit()


4. Fetch Song Lyrics
# pip install lyricsgenius

import lyricsgenius

api_key = "xxxxxxxxxxxxxxxxxxxxx"

genius = lyricsgenius.Genius(api_key)
artist = genius.search_artist("Pop Smoke", max_songs=5,sort="title")
song = artist.song("100k On a Coupe")

print(song.lyrics)


5. Get Exif Data of Photos
# Get Exif of Photo

# Method 1
# pip install pillow
import PIL.Image
import PIL.ExifTags

img = PIL.Image.open("Img.jpg")
exif_data =
{
PIL.ExifTags.TAGS[i]: j
for i, j in img._getexif().items()
if i in PIL.ExifTags.TAGS
}
print(exif_data)


# Method 2
# pip install ExifRead
import exifread

filename = open(path_name, 'rb')

tags = exifread.process_file(filename)
print(tags)


6. OCR Text from Image
# pip install pytesseract

import pytesseract
from PIL import Image

pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'

t=Image.open("img.png")
text = pytesseract.image_to_string(t, config='')

print(text)


7. Convert Photo into Cartonize

# pip install opencv-python

import cv2

img = cv2.imread('img.jpg')
grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
grayimg = cv2.medianBlur(grayimg, 5)

edges = cv2.Laplacian(grayimg , cv2.CV_8U, ksize=5)
r,mask =cv2.threshold(edges,100,255,cv2.THRESH_BINARY_INV)

img2 = cv2.bitwise_and(img, img, mask=mask)
img2 = cv2.medianBlur(img2, 5)

cv2.imwrite("cartooned.jpg", mask)


8. Empty Recycle Bin
# pip install winshell

import winshell
try:
winshell.recycle_bin().empty(confirm=False, /show_progress=False, sound=True)
print("Recycle bin is emptied Now")
except:
print("Recycle bin already empty")


9. Python Image Enhancement
# pip install pillow

from PIL import Image,ImageFilter
from PIL import ImageEnhance

im = Image.open('img.jpg')

# Choose your filter
# add Hastag at start if you don't want to any filter below

en = ImageEnhance.Color(im)
en = ImageEnhance.Contrast(im)
en = ImageEnhance.Brightness(im)
en = ImageEnhance.Sharpness(im)

# result
en.enhance(1.5).show("enhanced")


10. Get Window Version
# Window Version

import wmi
data = wmi.WMI()
for os_name in data.Win32_OperatingSystem():
print(os_name.Caption) # Microsoft Windows 11 Home


https://t.me/DataScienceT
🖥 Unraveling the Magic of Sorting: A Python Guide for Novices

Bubble Sort

def bubble_sort(list):
for i in range(len(list)):
for j in range(len(list) - 1):
if list[j] > list[j + 1]:
list[j], list[j + 1] = list[j + 1], list[j] # swap
return list


Selection Sort

def selection_sort(list):
for i in range(len(list)):
min_index = i
for j in range(i + 1, len(list)):
if list[min_index] > list[j]:
min_index = j
list[i], list[min_index] = list[min_index], list[i] # swap
return list


Insertion Sort

def insertion_sort(list):
for i in range(1, len(list)):
key = list[i]
j = i - 1
while j >=0 and key < list[j] :
list[j+1] = list[j]
j -= 1
list[j+1] = key
return list

Quick Sort

def partition(array, low, high):
i = (low-1)
pivot = array[high]

for j in range(low, high):
if array[j] <= pivot:
i = i+1
array[i], array[j] = array[j], array[i]
array[i+1], array[high] = array[high], array[i+1]
return (i+1)

def quick_sort(array, low, high):
if len(array) == 1:
return array
if low < high:
partition_index = partition(array, low, high)
quick_sort(array, low, partition_index-1)
quick_sort(array, partition_index+1, high)

https://t.me/CodeProgrammer
NumPy Tutorial: Your First Steps Into Data Science in Python

https://realpython.com/numpy-tutorial

https://t.me/CodeProgrammer
Building an Image Recognition API using Flask.

Step 1: Set up the project environment

1. Create a new directory for your project and navigate to it.
2. Create a virtual environment (optional but recommended):
(Image 1.)
3. Install the necessary libraries (image 2.)

Step 2: Create a Flask Web Application
Create a new file called app.py in the project directory (image 3.)

Step 3: Launch the Flask Application
Save the changes and run the Flask application (image 4.)

Step 4: Test the API
Your API is now up and running and you can send images to /predict via HTTP POST requests.
You can use tools such as curl or Postman to test the API.
• An example of using curl (image 5.)
• An example using Python queries (image 6.)

https://t.me/DataScienceT
📩 Python Email Automation Script

import smtplib
from email.mime.text import MIMEText


sender_email = "your_email@example.com"
recipient_email = "recipient_email@example.com"

subject = "Automated Email"
message = "This is an automated email sent using Python."


# SMTP server configuration (example: Gmail)


smtp_server = "smtp.gmail.com"
smtp_port = 587
smtp_username = "your_username"
smtp_password = "your_password"



msg = MIMEText(message)
msg["Subject"] = subject
msg["From"] = sender_email
msg["To"] = recipient_email
try:

server = smtplib.SMTP(smtp_server, smtp_port)
server.starttls()
server.login(smtp_username, smtp_password)
server.sendmail(sender_email, recipient_email, msg.as_string())
print("Email sent successfully!")

except Exception as e:
print("Error sending email:", str(e))

finally:

server.quit()

https://t.me/DataScienceT