Python | Machine Learning | Coding | R
62.1K subscribers
1.12K photos
67 videos
140 files
771 links
List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

Help and ads: @hussein_sheikho

https://telega.io/?r=nikapsOH
Download Telegram
Public APIs

A collective list of free APIs

📃 Creator: public-apis

📃 Forked by: 27.8k

🌐 GitHub repo: https://github.com/public-apis/public-apis

Please move to our new channel

Current channel @datascience_books is banned 😔
t.me/DataScienceM
How to Add an Editor to Your Django App (Ckeditor)

In this tutorial, we will be looking at how to add an editor to your Django app which will ease your content creation process.

https://bytexplain.com/how-to-add-an-editor-to-your-django-app-ckeditor

More ♥️♥️ = more posts

@CodeProgrammer ♥️
⭐️ Data Science Books
https://t.me/DataScienceM

⭐️ Python | Algorithms | Data Structures
https://t.me/DataScience4

⭐️ Programming Languages | Web & Mobile Development | SQL | Software Design & Analysis
https://t.me/Ebooks2023
Machine Learning With Python
Learning Path

Skills: Image Processing, Text Classification, Speech Recognition

Machine learning is a field of computer science that uses statistical techniques to give computer programs the ability to learn from past experiences and improve how they perform specific tasks.

With this learning path, you’ll sample a range of common machine learning scenarios using Python.

https://realpython.com/learning-paths/machine-learning-python

More ♥️♥️ = more posts

@CodeProgrammer ♥️
What Is Attention?

Attention is becoming increasingly popular in machine learning, but what makes it such an attractive concept? What is the relationship between attention applied in artificial neural networks and its biological counterpart? What components would one expect to form an attention-based system in machine learning?

https://machinelearningmastery.com/what-is-attention/

More ♥️♥️ = more posts

@CodeProgrammer ♥️
This media is not supported in your browser
VIEW IN TELEGRAM
The source code for DragGAN has been released! 🔥🔥🔥

We can finally play with that marvel!

🔗 GitHub repository: https://github.com/XingangPan/DragGAN

https://t.me/DataScienceT
How to Make a Twitter Bot in Python With Tweepy

https://realpython.com/twitter-bot-python-tweepy/

More ♥️♥️ = more posts

@CodeProgrammer ♥️
Understanding Simple Recurrent Neural Networks in Keras

https://machinelearningmastery.com/understanding-simple-recurrent-neural-networks-in-keras/

More ♥️♥️ = more posts

@CodeProgrammer ♥️
Python Docker Tutorials

Docker is a containerization tool used for spinning up isolated, reproducible application environments. It is a popular development tool for Python developers.

https://realpython.com/tutorials/docker/
The Transformer Attention Mechanism

https://machinelearningmastery.com/the-transformer-attention-mechanism/

More ♥️♥️ = more posts

@CodeProgrammer ♥️
This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning

https://t.me/DataScienceM
https://t.me/DataScienceM
This channels is for Programmers, Coders, Software Engineers.

0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages

https://t.me/addlist/8_rRW2scgfRhOTc0
🖥 10 Advanced Python Scripts For Everyday Programming

1. SpeedTest with Python
# pip install pyspeedtest
# pip install speedtest
# pip install speedtest-cli

#method 1
import speedtest

speedTest = speedtest.Speedtest()
print(speedTest.get_best_server())

#Check download speed
print(speedTest.download())

#Check upload speed
print(speedTest.upload())

# Method 2

import pyspeedtest
st = pyspeedtest.SpeedTest()
st.ping()
st.download()
st.upload()

2. Search on Google

# pip install google

from googlesearch import search

query = "Medium.com"

for url in search(query):
print(url)


3. Make Web Bot
# pip install selenium

import time
from selenium import webdriver
from selenium.webdriver.common.keys import Keys

bot = webdriver.Chrome("chromedriver.exe")
bot.get('[http://www.google.com'](http://www.google.com'))

search = bot.find_element_by_name('q')
search.send_keys("@codedev101")
search.send_keys(Keys.RETURN)
time.sleep(5)
bot.quit()


4. Fetch Song Lyrics
# pip install lyricsgenius

import lyricsgenius

api_key = "xxxxxxxxxxxxxxxxxxxxx"

genius = lyricsgenius.Genius(api_key)
artist = genius.search_artist("Pop Smoke", max_songs=5,sort="title")
song = artist.song("100k On a Coupe")

print(song.lyrics)


5. Get Exif Data of Photos
# Get Exif of Photo

# Method 1
# pip install pillow
import PIL.Image
import PIL.ExifTags

img = PIL.Image.open("Img.jpg")
exif_data =
{
PIL.ExifTags.TAGS[i]: j
for i, j in img._getexif().items()
if i in PIL.ExifTags.TAGS
}
print(exif_data)


# Method 2
# pip install ExifRead
import exifread

filename = open(path_name, 'rb')

tags = exifread.process_file(filename)
print(tags)


6. OCR Text from Image
# pip install pytesseract

import pytesseract
from PIL import Image

pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'

t=Image.open("img.png")
text = pytesseract.image_to_string(t, config='')

print(text)


7. Convert Photo into Cartonize

# pip install opencv-python

import cv2

img = cv2.imread('img.jpg')
grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
grayimg = cv2.medianBlur(grayimg, 5)

edges = cv2.Laplacian(grayimg , cv2.CV_8U, ksize=5)
r,mask =cv2.threshold(edges,100,255,cv2.THRESH_BINARY_INV)

img2 = cv2.bitwise_and(img, img, mask=mask)
img2 = cv2.medianBlur(img2, 5)

cv2.imwrite("cartooned.jpg", mask)


8. Empty Recycle Bin
# pip install winshell

import winshell
try:
winshell.recycle_bin().empty(confirm=False, /show_progress=False, sound=True)
print("Recycle bin is emptied Now")
except:
print("Recycle bin already empty")


9. Python Image Enhancement
# pip install pillow

from PIL import Image,ImageFilter
from PIL import ImageEnhance

im = Image.open('img.jpg')

# Choose your filter
# add Hastag at start if you don't want to any filter below

en = ImageEnhance.Color(im)
en = ImageEnhance.Contrast(im)
en = ImageEnhance.Brightness(im)
en = ImageEnhance.Sharpness(im)

# result
en.enhance(1.5).show("enhanced")


10. Get Window Version
# Window Version

import wmi
data = wmi.WMI()
for os_name in data.Win32_OperatingSystem():
print(os_name.Caption) # Microsoft Windows 11 Home


https://t.me/DataScienceT
🖥 Unraveling the Magic of Sorting: A Python Guide for Novices

Bubble Sort

def bubble_sort(list):
for i in range(len(list)):
for j in range(len(list) - 1):
if list[j] > list[j + 1]:
list[j], list[j + 1] = list[j + 1], list[j] # swap
return list


Selection Sort

def selection_sort(list):
for i in range(len(list)):
min_index = i
for j in range(i + 1, len(list)):
if list[min_index] > list[j]:
min_index = j
list[i], list[min_index] = list[min_index], list[i] # swap
return list


Insertion Sort

def insertion_sort(list):
for i in range(1, len(list)):
key = list[i]
j = i - 1
while j >=0 and key < list[j] :
list[j+1] = list[j]
j -= 1
list[j+1] = key
return list

Quick Sort

def partition(array, low, high):
i = (low-1)
pivot = array[high]

for j in range(low, high):
if array[j] <= pivot:
i = i+1
array[i], array[j] = array[j], array[i]
array[i+1], array[high] = array[high], array[i+1]
return (i+1)

def quick_sort(array, low, high):
if len(array) == 1:
return array
if low < high:
partition_index = partition(array, low, high)
quick_sort(array, low, partition_index-1)
quick_sort(array, partition_index+1, high)

https://t.me/CodeProgrammer
NumPy Tutorial: Your First Steps Into Data Science in Python

https://realpython.com/numpy-tutorial

https://t.me/CodeProgrammer