CVE-2025-15510 - NEX-Forms – Ultimate Forms Plugin for WordPress <= 9.1.8 - Missing Authorization to Unauthenticated Sensitive Information Exposure
CVE ID : CVE-2025-15510
Published : Jan. 31, 2026, 1:23 a.m. | 1 hour, 5 minutes ago
Description : The NEX-Forms – Ultimate Forms Plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the NF5_Export_Forms class constructor in all versions up to, and including, 9.1.8. This makes it possible for unauthenticated attackers to export form configurations, that may include sensitive data, such as email addresses, PayPal API credentials, and third-party integration keys by enumerating the nex_forms_Id parameter.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2025-15510
Published : Jan. 31, 2026, 1:23 a.m. | 1 hour, 5 minutes ago
Description : The NEX-Forms – Ultimate Forms Plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the NF5_Export_Forms class constructor in all versions up to, and including, 9.1.8. This makes it possible for unauthenticated attackers to export form configurations, that may include sensitive data, such as email addresses, PayPal API credentials, and third-party integration keys by enumerating the nex_forms_Id parameter.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2025-15525 - Ajax Load More – Infinite Scroll, Lazy Load & Load More <= 7.8.1 - Incorrect Authorization to Unauthenticated Private/Draft Post Title and Excerpt Exposure
CVE ID : CVE-2025-15525
Published : Jan. 31, 2026, 5:16 a.m. | 1 hour, 12 minutes ago
Description : The Ajax Load More – Infinite Scroll, Load More, & Lazy Load plugin for WordPress is vulnerable to unauthorized access of data due to incorrect authorization on the parse_custom_args() function in all versions up to, and including, 7.8.1. This makes it possible for unauthenticated attackers to expose the titles and excerpts of private, draft, pending, scheduled, and trashed posts.
Severity: 5.3 | MEDIUM
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2025-15525
Published : Jan. 31, 2026, 5:16 a.m. | 1 hour, 12 minutes ago
Description : The Ajax Load More – Infinite Scroll, Load More, & Lazy Load plugin for WordPress is vulnerable to unauthorized access of data due to incorrect authorization on the parse_custom_args() function in all versions up to, and including, 7.8.1. This makes it possible for unauthenticated attackers to expose the titles and excerpts of private, draft, pending, scheduled, and trashed posts.
Severity: 5.3 | MEDIUM
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-1431 - Booking Calendar <= 10.14.13 - Missing Authorization to Unauthenticated Booking Details Exposure
CVE ID : CVE-2026-1431
Published : Jan. 31, 2026, 5:16 a.m. | 1 hour, 12 minutes ago
Description : The Booking Calendar plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the wpbc_ajax_WPBC_FLEXTIMELINE_NAV() function in all versions up to, and including, 10.14.13. This makes it possible for unauthenticated attackers to retrieve booking information including customer names, phones and emails.
Severity: 5.3 | MEDIUM
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-1431
Published : Jan. 31, 2026, 5:16 a.m. | 1 hour, 12 minutes ago
Description : The Booking Calendar plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the wpbc_ajax_WPBC_FLEXTIMELINE_NAV() function in all versions up to, and including, 10.14.13. This makes it possible for unauthenticated attackers to retrieve booking information including customer names, phones and emails.
Severity: 5.3 | MEDIUM
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-0683 - SupportCandy – Helpdesk & Customer Support Ticket System <= 3.4.4 - Authenticated (Subscriber+) SQL Injection via Number Field Filter
CVE ID : CVE-2026-0683
Published : Jan. 31, 2026, 5:52 a.m. | 35 minutes ago
Description : The SupportCandy – Helpdesk & Customer Support Ticket System plugin for WordPress is vulnerable to SQL Injection via the Number-type custom field filter in all versions up to, and including, 3.4.4. This is due to insufficient escaping on the user-supplied operand value when using the equals operator and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Subscriber-level access and above (customers), to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-0683
Published : Jan. 31, 2026, 5:52 a.m. | 35 minutes ago
Description : The SupportCandy – Helpdesk & Customer Support Ticket System plugin for WordPress is vulnerable to SQL Injection via the Number-type custom field filter in all versions up to, and including, 3.4.4. This is due to insufficient escaping on the user-supplied operand value when using the equals operator and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Subscriber-level access and above (customers), to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-1251 - SupportCandy – Helpdesk & Customer Support Ticket System <= 3.4.4 - Authenticated (Subscriber+) Insecure Direct Object Reference
CVE ID : CVE-2026-1251
Published : Jan. 31, 2026, 7:16 a.m. | 3 hours, 12 minutes ago
Description : The SupportCandy – Helpdesk & Customer Support Ticket System plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 3.4.4 via the 'add_reply' function due to missing validation on a user controlled key. This makes it possible for authenticated attackers, with subscriber-level access and above, to steal file attachments uploaded by other users by specifying arbitrary attachment IDs in the 'description_attachments' parameter, re-associating those files to their own tickets and removing access from the original owners.
Severity: 5.4 | MEDIUM
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-1251
Published : Jan. 31, 2026, 7:16 a.m. | 3 hours, 12 minutes ago
Description : The SupportCandy – Helpdesk & Customer Support Ticket System plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 3.4.4 via the 'add_reply' function due to missing validation on a user controlled key. This makes it possible for authenticated attackers, with subscriber-level access and above, to steal file attachments uploaded by other users by specifying arbitrary attachment IDs in the 'description_attachments' parameter, re-associating those files to their own tickets and removing access from the original owners.
Severity: 5.4 | MEDIUM
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-23017 - idpf: fix error handling in the init_task on load
CVE ID : CVE-2026-23017
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: idpf: fix error handling in the init_task on load If the init_task fails during a driver load, we end up without vports and netdevs, effectively failing the entire process. In that state a subsequent reset will result in a crash as the service task attempts to access uninitialized resources. Following trace is from an error in the init_task where the CREATE_VPORT (op 501) is rejected by the FW: [40922.763136] idpf 0000:83:00.0: Device HW Reset initiated [40924.449797] idpf 0000:83:00.0: Transaction failed (op 501) [40958.148190] idpf 0000:83:00.0: HW reset detected [40958.161202] BUG: kernel NULL pointer dereference, address: 00000000000000a8 ... [40958.168094] Workqueue: idpf-0000:83:00.0-vc_event idpf_vc_event_task [idpf] [40958.168865] RIP: 0010:idpf_vc_event_task+0x9b/0x350 [idpf] ... [40958.177932] Call Trace: [40958.178491] [40958.179040] process_one_work+0x226/0x6d0 [40958.179609] worker_thread+0x19e/0x340 [40958.180158] ? __pfx_worker_thread+0x10/0x10 [40958.180702] kthread+0x10f/0x250 [40958.181238] ? __pfx_kthread+0x10/0x10 [40958.181774] ret_from_fork+0x251/0x2b0 [40958.182307] ? __pfx_kthread+0x10/0x10 [40958.182834] ret_from_fork_asm+0x1a/0x30 [40958.183370] Fix the error handling in the init_task to make sure the service and mailbox tasks are disabled if the error happens during load. These are started in idpf_vc_core_init(), which spawns the init_task and has no way of knowing if it failed. If the error happens on reset, following successful driver load, the tasks can still run, as that will allow the netdevs to attempt recovery through another reset. Stop the PTP callbacks either way as those will be restarted by the call to idpf_vc_core_init() during a successful reset.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-23017
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: idpf: fix error handling in the init_task on load If the init_task fails during a driver load, we end up without vports and netdevs, effectively failing the entire process. In that state a subsequent reset will result in a crash as the service task attempts to access uninitialized resources. Following trace is from an error in the init_task where the CREATE_VPORT (op 501) is rejected by the FW: [40922.763136] idpf 0000:83:00.0: Device HW Reset initiated [40924.449797] idpf 0000:83:00.0: Transaction failed (op 501) [40958.148190] idpf 0000:83:00.0: HW reset detected [40958.161202] BUG: kernel NULL pointer dereference, address: 00000000000000a8 ... [40958.168094] Workqueue: idpf-0000:83:00.0-vc_event idpf_vc_event_task [idpf] [40958.168865] RIP: 0010:idpf_vc_event_task+0x9b/0x350 [idpf] ... [40958.177932] Call Trace: [40958.178491] [40958.179040] process_one_work+0x226/0x6d0 [40958.179609] worker_thread+0x19e/0x340 [40958.180158] ? __pfx_worker_thread+0x10/0x10 [40958.180702] kthread+0x10f/0x250 [40958.181238] ? __pfx_kthread+0x10/0x10 [40958.181774] ret_from_fork+0x251/0x2b0 [40958.182307] ? __pfx_kthread+0x10/0x10 [40958.182834] ret_from_fork_asm+0x1a/0x30 [40958.183370] Fix the error handling in the init_task to make sure the service and mailbox tasks are disabled if the error happens during load. These are started in idpf_vc_core_init(), which spawns the init_task and has no way of knowing if it failed. If the error happens on reset, following successful driver load, the tasks can still run, as that will allow the netdevs to attempt recovery through another reset. Stop the PTP callbacks either way as those will be restarted by the call to idpf_vc_core_init() during a successful reset.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-23018 - btrfs: release path before initializing extent tree in btrfs_read_locked_inode()
CVE ID : CVE-2026-23018
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: btrfs: release path before initializing extent tree in btrfs_read_locked_inode() In btrfs_read_locked_inode() we are calling btrfs_init_file_extent_tree() while holding a path with a read locked leaf from a subvolume tree, and btrfs_init_file_extent_tree() may do a GFP_KERNEL allocation, which can trigger reclaim. This can create a circular lock dependency which lockdep warns about with the following splat: [6.1433] ====================================================== [6.1574] WARNING: possible circular locking dependency detected [6.1583] 6.18.0+ #4 Tainted: G U [6.1591] ------------------------------------------------------ [6.1599] kswapd0/117 is trying to acquire lock: [6.1606] ffff8d9b6333c5b8 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x39/0x2f0 [6.1625] but task is already holding lock: [6.1633] ffffffffa4ab8ce0 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0x195/0xc60 [6.1646] which lock already depends on the new lock. [6.1657] the existing dependency chain (in reverse order) is: [6.1667] -> #2 (fs_reclaim){+.+.}-{0:0}: [6.1677] fs_reclaim_acquire+0x9d/0xd0 [6.1685] __kmalloc_cache_noprof+0x59/0x750 [6.1694] btrfs_init_file_extent_tree+0x90/0x100 [6.1702] btrfs_read_locked_inode+0xc3/0x6b0 [6.1710] btrfs_iget+0xbb/0xf0 [6.1716] btrfs_lookup_dentry+0x3c5/0x8e0 [6.1724] btrfs_lookup+0x12/0x30 [6.1731] lookup_open.isra.0+0x1aa/0x6a0 [6.1739] path_openat+0x5f7/0xc60 [6.1746] do_filp_open+0xd6/0x180 [6.1753] do_sys_openat2+0x8b/0xe0 [6.1760] __x64_sys_openat+0x54/0xa0 [6.1768] do_syscall_64+0x97/0x3e0 [6.1776] entry_SYSCALL_64_after_hwframe+0x76/0x7e [6.1784] -> #1 (btrfs-tree-00){++++}-{3:3}: [6.1794] lock_release+0x127/0x2a0 [6.1801] up_read+0x1b/0x30 [6.1808] btrfs_search_slot+0x8e0/0xff0 [6.1817] btrfs_lookup_inode+0x52/0xd0 [6.1825] __btrfs_update_delayed_inode+0x73/0x520 [6.1833] btrfs_commit_inode_delayed_inode+0x11a/0x120 [6.1842] btrfs_log_inode+0x608/0x1aa0 [6.1849] btrfs_log_inode_parent+0x249/0xf80 [6.1857] btrfs_log_dentry_safe+0x3e/0x60 [6.1865] btrfs_sync_file+0x431/0x690 [6.1872] do_fsync+0x39/0x80 [6.1879] __x64_sys_fsync+0x13/0x20 [6.1887] do_syscall_64+0x97/0x3e0 [6.1894] entry_SYSCALL_64_after_hwframe+0x76/0x7e [6.1903] -> #0 (&delayed_node->mutex){+.+.}-{3:3}: [6.1913] __lock_acquire+0x15e9/0x2820 [6.1920] lock_acquire+0xc9/0x2d0 [6.1927] __mutex_lock+0xcc/0x10a0 [6.1934] __btrfs_release_delayed_node.part.0+0x39/0x2f0 [6.1944] btrfs_evict_inode+0x20b/0x4b0 [6.1952] evict+0x15a/0x2f0 [6.1958] prune_icache_sb+0x91/0xd0 [6.1966] super_cache_scan+0x150/0x1d0 [6.1974] do_shrink_slab+0x155/0x6f0 [6.1981] shrink_slab+0x48e/0x890 [6.1988] shrink_one+0x11a/0x1f0 [6.1995] shrink_node+0xbfd/0x1320 [6.1002] balance_pgdat+0x67f/0xc60 [6.1321] kswapd+0x1dc/0x3e0 [6.1643] kthread+0xff/0x240 [6.1965] ret_from_fork+0x223/0x280 [6.1287] ret_from_fork_asm+0x1a/0x30 [6.1616] other info that might help us debug this: [6.1561] Chain exists of: &delayed_node->mutex --> btrfs-tree-00 --> fs_reclaim [6.1503] Possible unsafe locking scenario: [6.1110] CPU0 CPU1 [6.1411] ---- ---- [6.1707] lock(fs_reclaim); [6.1998] lock(btrfs-tree-00); [6.1291] lock(fs_reclaim); [6.1581] lock(&del ---truncated---
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-23018
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: btrfs: release path before initializing extent tree in btrfs_read_locked_inode() In btrfs_read_locked_inode() we are calling btrfs_init_file_extent_tree() while holding a path with a read locked leaf from a subvolume tree, and btrfs_init_file_extent_tree() may do a GFP_KERNEL allocation, which can trigger reclaim. This can create a circular lock dependency which lockdep warns about with the following splat: [6.1433] ====================================================== [6.1574] WARNING: possible circular locking dependency detected [6.1583] 6.18.0+ #4 Tainted: G U [6.1591] ------------------------------------------------------ [6.1599] kswapd0/117 is trying to acquire lock: [6.1606] ffff8d9b6333c5b8 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x39/0x2f0 [6.1625] but task is already holding lock: [6.1633] ffffffffa4ab8ce0 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0x195/0xc60 [6.1646] which lock already depends on the new lock. [6.1657] the existing dependency chain (in reverse order) is: [6.1667] -> #2 (fs_reclaim){+.+.}-{0:0}: [6.1677] fs_reclaim_acquire+0x9d/0xd0 [6.1685] __kmalloc_cache_noprof+0x59/0x750 [6.1694] btrfs_init_file_extent_tree+0x90/0x100 [6.1702] btrfs_read_locked_inode+0xc3/0x6b0 [6.1710] btrfs_iget+0xbb/0xf0 [6.1716] btrfs_lookup_dentry+0x3c5/0x8e0 [6.1724] btrfs_lookup+0x12/0x30 [6.1731] lookup_open.isra.0+0x1aa/0x6a0 [6.1739] path_openat+0x5f7/0xc60 [6.1746] do_filp_open+0xd6/0x180 [6.1753] do_sys_openat2+0x8b/0xe0 [6.1760] __x64_sys_openat+0x54/0xa0 [6.1768] do_syscall_64+0x97/0x3e0 [6.1776] entry_SYSCALL_64_after_hwframe+0x76/0x7e [6.1784] -> #1 (btrfs-tree-00){++++}-{3:3}: [6.1794] lock_release+0x127/0x2a0 [6.1801] up_read+0x1b/0x30 [6.1808] btrfs_search_slot+0x8e0/0xff0 [6.1817] btrfs_lookup_inode+0x52/0xd0 [6.1825] __btrfs_update_delayed_inode+0x73/0x520 [6.1833] btrfs_commit_inode_delayed_inode+0x11a/0x120 [6.1842] btrfs_log_inode+0x608/0x1aa0 [6.1849] btrfs_log_inode_parent+0x249/0xf80 [6.1857] btrfs_log_dentry_safe+0x3e/0x60 [6.1865] btrfs_sync_file+0x431/0x690 [6.1872] do_fsync+0x39/0x80 [6.1879] __x64_sys_fsync+0x13/0x20 [6.1887] do_syscall_64+0x97/0x3e0 [6.1894] entry_SYSCALL_64_after_hwframe+0x76/0x7e [6.1903] -> #0 (&delayed_node->mutex){+.+.}-{3:3}: [6.1913] __lock_acquire+0x15e9/0x2820 [6.1920] lock_acquire+0xc9/0x2d0 [6.1927] __mutex_lock+0xcc/0x10a0 [6.1934] __btrfs_release_delayed_node.part.0+0x39/0x2f0 [6.1944] btrfs_evict_inode+0x20b/0x4b0 [6.1952] evict+0x15a/0x2f0 [6.1958] prune_icache_sb+0x91/0xd0 [6.1966] super_cache_scan+0x150/0x1d0 [6.1974] do_shrink_slab+0x155/0x6f0 [6.1981] shrink_slab+0x48e/0x890 [6.1988] shrink_one+0x11a/0x1f0 [6.1995] shrink_node+0xbfd/0x1320 [6.1002] balance_pgdat+0x67f/0xc60 [6.1321] kswapd+0x1dc/0x3e0 [6.1643] kthread+0xff/0x240 [6.1965] ret_from_fork+0x223/0x280 [6.1287] ret_from_fork_asm+0x1a/0x30 [6.1616] other info that might help us debug this: [6.1561] Chain exists of: &delayed_node->mutex --> btrfs-tree-00 --> fs_reclaim [6.1503] Possible unsafe locking scenario: [6.1110] CPU0 CPU1 [6.1411] ---- ---- [6.1707] lock(fs_reclaim); [6.1998] lock(btrfs-tree-00); [6.1291] lock(fs_reclaim); [6.1581] lock(&del ---truncated---
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-23019 - net: marvell: prestera: fix NULL dereference on devlink_alloc() failure
CVE ID : CVE-2026-23019
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: net: marvell: prestera: fix NULL dereference on devlink_alloc() failure devlink_alloc() may return NULL on allocation failure, but prestera_devlink_alloc() unconditionally calls devlink_priv() on the returned pointer. This leads to a NULL pointer dereference if devlink allocation fails. Add a check for a NULL devlink pointer and return NULL early to avoid the crash.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-23019
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: net: marvell: prestera: fix NULL dereference on devlink_alloc() failure devlink_alloc() may return NULL on allocation failure, but prestera_devlink_alloc() unconditionally calls devlink_priv() on the returned pointer. This leads to a NULL pointer dereference if devlink allocation fails. Add a check for a NULL devlink pointer and return NULL early to avoid the crash.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-23020 - net: 3com: 3c59x: fix possible null dereference in vortex_probe1()
CVE ID : CVE-2026-23020
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: net: 3com: 3c59x: fix possible null dereference in vortex_probe1() pdev can be null and free_ring: can be called in 1297 with a null pdev.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-23020
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: net: 3com: 3c59x: fix possible null dereference in vortex_probe1() pdev can be null and free_ring: can be called in 1297 with a null pdev.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-23021 - net: usb: pegasus: fix memory leak in update_eth_regs_async()
CVE ID : CVE-2026-23021
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: net: usb: pegasus: fix memory leak in update_eth_regs_async() When asynchronously writing to the device registers and if usb_submit_urb() fail, the code fail to release allocated to this point resources.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-23021
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: net: usb: pegasus: fix memory leak in update_eth_regs_async() When asynchronously writing to the device registers and if usb_submit_urb() fail, the code fail to release allocated to this point resources.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-23022 - idpf: fix memory leak in idpf_vc_core_deinit()
CVE ID : CVE-2026-23022
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: idpf: fix memory leak in idpf_vc_core_deinit() Make sure to free hw->lan_regs. Reported by kmemleak during reset: unreferenced object 0xff1b913d02a936c0 (size 96): comm "kworker/u258:14", pid 2174, jiffies 4294958305 hex dump (first 32 bytes): 00 00 00 c0 a8 ba 2d ff 00 00 00 00 00 00 00 00 ......-......... 00 00 40 08 00 00 00 00 00 00 25 b3 a8 ba 2d ff ..@.......%...-. backtrace (crc 36063c4f): __kmalloc_noprof+0x48f/0x890 idpf_vc_core_init+0x6ce/0x9b0 [idpf] idpf_vc_event_task+0x1fb/0x350 [idpf] process_one_work+0x226/0x6d0 worker_thread+0x19e/0x340 kthread+0x10f/0x250 ret_from_fork+0x251/0x2b0 ret_from_fork_asm+0x1a/0x30
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-23022
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: idpf: fix memory leak in idpf_vc_core_deinit() Make sure to free hw->lan_regs. Reported by kmemleak during reset: unreferenced object 0xff1b913d02a936c0 (size 96): comm "kworker/u258:14", pid 2174, jiffies 4294958305 hex dump (first 32 bytes): 00 00 00 c0 a8 ba 2d ff 00 00 00 00 00 00 00 00 ......-......... 00 00 40 08 00 00 00 00 00 00 25 b3 a8 ba 2d ff ..@.......%...-. backtrace (crc 36063c4f): __kmalloc_noprof+0x48f/0x890 idpf_vc_core_init+0x6ce/0x9b0 [idpf] idpf_vc_event_task+0x1fb/0x350 [idpf] process_one_work+0x226/0x6d0 worker_thread+0x19e/0x340 kthread+0x10f/0x250 ret_from_fork+0x251/0x2b0 ret_from_fork_asm+0x1a/0x30
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-23023 - idpf: fix memory leak in idpf_vport_rel()
CVE ID : CVE-2026-23023
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: idpf: fix memory leak in idpf_vport_rel() Free vport->rx_ptype_lkup in idpf_vport_rel() to avoid leaking memory during a reset. Reported by kmemleak: unreferenced object 0xff450acac838a000 (size 4096): comm "kworker/u258:5", pid 7732, jiffies 4296830044 hex dump (first 32 bytes): 00 00 00 00 00 10 00 00 00 10 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 10 00 00 00 00 00 00 ................ backtrace (crc 3da81902): __kmalloc_cache_noprof+0x469/0x7a0 idpf_send_get_rx_ptype_msg+0x90/0x570 [idpf] idpf_init_task+0x1ec/0x8d0 [idpf] process_one_work+0x226/0x6d0 worker_thread+0x19e/0x340 kthread+0x10f/0x250 ret_from_fork+0x251/0x2b0 ret_from_fork_asm+0x1a/0x30
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-23023
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: idpf: fix memory leak in idpf_vport_rel() Free vport->rx_ptype_lkup in idpf_vport_rel() to avoid leaking memory during a reset. Reported by kmemleak: unreferenced object 0xff450acac838a000 (size 4096): comm "kworker/u258:5", pid 7732, jiffies 4296830044 hex dump (first 32 bytes): 00 00 00 00 00 10 00 00 00 10 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 10 00 00 00 00 00 00 ................ backtrace (crc 3da81902): __kmalloc_cache_noprof+0x469/0x7a0 idpf_send_get_rx_ptype_msg+0x90/0x570 [idpf] idpf_init_task+0x1ec/0x8d0 [idpf] process_one_work+0x226/0x6d0 worker_thread+0x19e/0x340 kthread+0x10f/0x250 ret_from_fork+0x251/0x2b0 ret_from_fork_asm+0x1a/0x30
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-23024 - idpf: fix memory leak of flow steer list on rmmod
CVE ID : CVE-2026-23024
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: idpf: fix memory leak of flow steer list on rmmod The flow steering list maintains entries that are added and removed as ethtool creates and deletes flow steering rules. Module removal with active entries causes memory leak as the list is not properly cleaned up. Prevent this by iterating through the remaining entries in the list and freeing the associated memory during module removal. Add a spinlock (flow_steer_list_lock) to protect the list access from multiple threads.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-23024
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: idpf: fix memory leak of flow steer list on rmmod The flow steering list maintains entries that are added and removed as ethtool creates and deletes flow steering rules. Module removal with active entries causes memory leak as the list is not properly cleaned up. Prevent this by iterating through the remaining entries in the list and freeing the associated memory during module removal. Add a spinlock (flow_steer_list_lock) to protect the list access from multiple threads.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-23025 - mm/page_alloc: prevent pcp corruption with SMP=n
CVE ID : CVE-2026-23025
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: mm/page_alloc: prevent pcp corruption with SMP=n The kernel test robot has reported: BUG: spinlock trylock failure on UP on CPU#0, kcompactd0/28 lock: 0xffff888807e35ef0, .magic: dead4ead, .owner: kcompactd0/28, .owner_cpu: 0 CPU: 0 UID: 0 PID: 28 Comm: kcompactd0 Not tainted 6.18.0-rc5-00127-ga06157804399 #1 PREEMPT 8cc09ef94dcec767faa911515ce9e609c45db470 Call Trace: __dump_stack (lib/dump_stack.c:95) dump_stack_lvl (lib/dump_stack.c:123) dump_stack (lib/dump_stack.c:130) spin_dump (kernel/locking/spinlock_debug.c:71) do_raw_spin_trylock (kernel/locking/spinlock_debug.c:?) _raw_spin_trylock (include/linux/spinlock_api_smp.h:89 kernel/locking/spinlock.c:138) __free_frozen_pages (mm/page_alloc.c:2973) ___free_pages (mm/page_alloc.c:5295) __free_pages (mm/page_alloc.c:5334) tlb_remove_table_rcu (include/linux/mm.h:? include/linux/mm.h:3122 include/asm-generic/tlb.h:220 mm/mmu_gather.c:227 mm/mmu_gather.c:290) ? __cfi_tlb_remove_table_rcu (mm/mmu_gather.c:289) ? rcu_core (kernel/rcu/tree.c:?) rcu_core (include/linux/rcupdate.h:341 kernel/rcu/tree.c:2607 kernel/rcu/tree.c:2861) rcu_core_si (kernel/rcu/tree.c:2879) handle_softirqs (arch/x86/include/asm/jump_label.h:36 include/trace/events/irq.h:142 kernel/softirq.c:623) __irq_exit_rcu (arch/x86/include/asm/jump_label.h:36 kernel/softirq.c:725) irq_exit_rcu (kernel/softirq.c:741) sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1052) RIP: 0010:_raw_spin_unlock_irqrestore (arch/x86/include/asm/preempt.h:95 include/linux/spinlock_api_smp.h:152 kernel/locking/spinlock.c:194) free_pcppages_bulk (mm/page_alloc.c:1494) drain_pages_zone (include/linux/spinlock.h:391 mm/page_alloc.c:2632) __drain_all_pages (mm/page_alloc.c:2731) drain_all_pages (mm/page_alloc.c:2747) kcompactd (mm/compaction.c:3115) kthread (kernel/kthread.c:465) ? __cfi_kcompactd (mm/compaction.c:3166) ? __cfi_kthread (kernel/kthread.c:412) ret_from_fork (arch/x86/kernel/process.c:164) ? __cfi_kthread (kernel/kthread.c:412) ret_from_fork_asm (arch/x86/entry/entry_64.S:255) Matthew has analyzed the report and identified that in drain_page_zone() we are in a section protected by spin_lock(&pcp->lock) and then get an interrupt that attempts spin_trylock() on the same lock. The code is designed to work this way without disabling IRQs and occasionally fail the trylock with a fallback. However, the SMP=n spinlock implementation assumes spin_trylock() will always succeed, and thus it's normally a no-op. Here the enabled lock debugging catches the problem, but otherwise it could cause a corruption of the pcp structure. The problem has been introduced by commit 574907741599 ("mm/page_alloc: leave IRQs enabled for per-cpu page allocations"). The pcp locking scheme recognizes the need for disabling IRQs to prevent nesting spin_trylock() sections on SMP=n, but the need to prevent the nesting in spin_lock() has not been recognized. Fix it by introducing local wrappers that change the spin_lock() to spin_lock_iqsave() with SMP=n and use them in all places that do spin_lock(&pcp->lock). [vbabka@suse.cz: add pcp_ prefix to the spin_lock_irqsave wrappers, per Steven]
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-23025
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: mm/page_alloc: prevent pcp corruption with SMP=n The kernel test robot has reported: BUG: spinlock trylock failure on UP on CPU#0, kcompactd0/28 lock: 0xffff888807e35ef0, .magic: dead4ead, .owner: kcompactd0/28, .owner_cpu: 0 CPU: 0 UID: 0 PID: 28 Comm: kcompactd0 Not tainted 6.18.0-rc5-00127-ga06157804399 #1 PREEMPT 8cc09ef94dcec767faa911515ce9e609c45db470 Call Trace: __dump_stack (lib/dump_stack.c:95) dump_stack_lvl (lib/dump_stack.c:123) dump_stack (lib/dump_stack.c:130) spin_dump (kernel/locking/spinlock_debug.c:71) do_raw_spin_trylock (kernel/locking/spinlock_debug.c:?) _raw_spin_trylock (include/linux/spinlock_api_smp.h:89 kernel/locking/spinlock.c:138) __free_frozen_pages (mm/page_alloc.c:2973) ___free_pages (mm/page_alloc.c:5295) __free_pages (mm/page_alloc.c:5334) tlb_remove_table_rcu (include/linux/mm.h:? include/linux/mm.h:3122 include/asm-generic/tlb.h:220 mm/mmu_gather.c:227 mm/mmu_gather.c:290) ? __cfi_tlb_remove_table_rcu (mm/mmu_gather.c:289) ? rcu_core (kernel/rcu/tree.c:?) rcu_core (include/linux/rcupdate.h:341 kernel/rcu/tree.c:2607 kernel/rcu/tree.c:2861) rcu_core_si (kernel/rcu/tree.c:2879) handle_softirqs (arch/x86/include/asm/jump_label.h:36 include/trace/events/irq.h:142 kernel/softirq.c:623) __irq_exit_rcu (arch/x86/include/asm/jump_label.h:36 kernel/softirq.c:725) irq_exit_rcu (kernel/softirq.c:741) sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1052) RIP: 0010:_raw_spin_unlock_irqrestore (arch/x86/include/asm/preempt.h:95 include/linux/spinlock_api_smp.h:152 kernel/locking/spinlock.c:194) free_pcppages_bulk (mm/page_alloc.c:1494) drain_pages_zone (include/linux/spinlock.h:391 mm/page_alloc.c:2632) __drain_all_pages (mm/page_alloc.c:2731) drain_all_pages (mm/page_alloc.c:2747) kcompactd (mm/compaction.c:3115) kthread (kernel/kthread.c:465) ? __cfi_kcompactd (mm/compaction.c:3166) ? __cfi_kthread (kernel/kthread.c:412) ret_from_fork (arch/x86/kernel/process.c:164) ? __cfi_kthread (kernel/kthread.c:412) ret_from_fork_asm (arch/x86/entry/entry_64.S:255) Matthew has analyzed the report and identified that in drain_page_zone() we are in a section protected by spin_lock(&pcp->lock) and then get an interrupt that attempts spin_trylock() on the same lock. The code is designed to work this way without disabling IRQs and occasionally fail the trylock with a fallback. However, the SMP=n spinlock implementation assumes spin_trylock() will always succeed, and thus it's normally a no-op. Here the enabled lock debugging catches the problem, but otherwise it could cause a corruption of the pcp structure. The problem has been introduced by commit 574907741599 ("mm/page_alloc: leave IRQs enabled for per-cpu page allocations"). The pcp locking scheme recognizes the need for disabling IRQs to prevent nesting spin_trylock() sections on SMP=n, but the need to prevent the nesting in spin_lock() has not been recognized. Fix it by introducing local wrappers that change the spin_lock() to spin_lock_iqsave() with SMP=n and use them in all places that do spin_lock(&pcp->lock). [vbabka@suse.cz: add pcp_ prefix to the spin_lock_irqsave wrappers, per Steven]
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-23026 - dmaengine: qcom: gpi: Fix memory leak in gpi_peripheral_config()
CVE ID : CVE-2026-23026
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: dmaengine: qcom: gpi: Fix memory leak in gpi_peripheral_config() Fix a memory leak in gpi_peripheral_config() where the original memory pointed to by gchan->config could be lost if krealloc() fails. The issue occurs when: 1. gchan->config points to previously allocated memory 2. krealloc() fails and returns NULL 3. The function directly assigns NULL to gchan->config, losing the reference to the original memory 4. The original memory becomes unreachable and cannot be freed Fix this by using a temporary variable to hold the krealloc() result and only updating gchan->config when the allocation succeeds. Found via static analysis and code review.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-23026
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: dmaengine: qcom: gpi: Fix memory leak in gpi_peripheral_config() Fix a memory leak in gpi_peripheral_config() where the original memory pointed to by gchan->config could be lost if krealloc() fails. The issue occurs when: 1. gchan->config points to previously allocated memory 2. krealloc() fails and returns NULL 3. The function directly assigns NULL to gchan->config, losing the reference to the original memory 4. The original memory becomes unreachable and cannot be freed Fix this by using a temporary variable to hold the krealloc() result and only updating gchan->config when the allocation succeeds. Found via static analysis and code review.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-23027 - LoongArch: KVM: Fix kvm_device leak in kvm_pch_pic_destroy()
CVE ID : CVE-2026-23027
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Fix kvm_device leak in kvm_pch_pic_destroy() In kvm_ioctl_create_device(), kvm_device has allocated memory, kvm_device->destroy() seems to be supposed to free its kvm_device struct, but kvm_pch_pic_destroy() is not currently doing this, that would lead to a memory leak. So, fix it.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-23027
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Fix kvm_device leak in kvm_pch_pic_destroy() In kvm_ioctl_create_device(), kvm_device has allocated memory, kvm_device->destroy() seems to be supposed to free its kvm_device struct, but kvm_pch_pic_destroy() is not currently doing this, that would lead to a memory leak. So, fix it.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-23028 - LoongArch: KVM: Fix kvm_device leak in kvm_ipi_destroy()
CVE ID : CVE-2026-23028
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Fix kvm_device leak in kvm_ipi_destroy() In kvm_ioctl_create_device(), kvm_device has allocated memory, kvm_device->destroy() seems to be supposed to free its kvm_device struct, but kvm_ipi_destroy() is not currently doing this, that would lead to a memory leak. So, fix it.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-23028
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Fix kvm_device leak in kvm_ipi_destroy() In kvm_ioctl_create_device(), kvm_device has allocated memory, kvm_device->destroy() seems to be supposed to free its kvm_device struct, but kvm_ipi_destroy() is not currently doing this, that would lead to a memory leak. So, fix it.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-23029 - LoongArch: KVM: Fix kvm_device leak in kvm_eiointc_destroy()
CVE ID : CVE-2026-23029
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Fix kvm_device leak in kvm_eiointc_destroy() In kvm_ioctl_create_device(), kvm_device has allocated memory, kvm_device->destroy() seems to be supposed to free its kvm_device struct, but kvm_eiointc_destroy() is not currently doing this, that would lead to a memory leak. So, fix it.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-23029
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Fix kvm_device leak in kvm_eiointc_destroy() In kvm_ioctl_create_device(), kvm_device has allocated memory, kvm_device->destroy() seems to be supposed to free its kvm_device struct, but kvm_eiointc_destroy() is not currently doing this, that would lead to a memory leak. So, fix it.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-23030 - phy: rockchip: inno-usb2: Fix a double free bug in rockchip_usb2phy_probe()
CVE ID : CVE-2026-23030
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: phy: rockchip: inno-usb2: Fix a double free bug in rockchip_usb2phy_probe() The for_each_available_child_of_node() calls of_node_put() to release child_np in each success loop. After breaking from the loop with the child_np has been released, the code will jump to the put_child label and will call the of_node_put() again if the devm_request_threaded_irq() fails. These cause a double free bug. Fix by returning directly to avoid the duplicate of_node_put().
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-23030
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: phy: rockchip: inno-usb2: Fix a double free bug in rockchip_usb2phy_probe() The for_each_available_child_of_node() calls of_node_put() to release child_np in each success loop. After breaking from the loop with the child_np has been released, the code will jump to the put_child label and will call the of_node_put() again if the devm_request_threaded_irq() fails. These cause a double free bug. Fix by returning directly to avoid the duplicate of_node_put().
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-23031 - can: gs_usb: gs_usb_receive_bulk_callback(): fix URB memory leak
CVE ID : CVE-2026-23031
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: gs_usb_receive_bulk_callback(): fix URB memory leak In gs_can_open(), the URBs for USB-in transfers are allocated, added to the parent->rx_submitted anchor and submitted. In the complete callback gs_usb_receive_bulk_callback(), the URB is processed and resubmitted. In gs_can_close() the URBs are freed by calling usb_kill_anchored_urbs(parent->rx_submitted). However, this does not take into account that the USB framework unanchors the URB before the complete function is called. This means that once an in-URB has been completed, it is no longer anchored and is ultimately not released in gs_can_close(). Fix the memory leak by anchoring the URB in the gs_usb_receive_bulk_callback() to the parent->rx_submitted anchor.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-23031
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: gs_usb_receive_bulk_callback(): fix URB memory leak In gs_can_open(), the URBs for USB-in transfers are allocated, added to the parent->rx_submitted anchor and submitted. In the complete callback gs_usb_receive_bulk_callback(), the URB is processed and resubmitted. In gs_can_close() the URBs are freed by calling usb_kill_anchored_urbs(parent->rx_submitted). However, this does not take into account that the USB framework unanchors the URB before the complete function is called. This means that once an in-URB has been completed, it is no longer anchored and is ultimately not released in gs_can_close(). Fix the memory leak by anchoring the URB in the gs_usb_receive_bulk_callback() to the parent->rx_submitted anchor.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE-2026-23032 - null_blk: fix kmemleak by releasing references to fault configfs items
CVE ID : CVE-2026-23032
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: null_blk: fix kmemleak by releasing references to fault configfs items When CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION is enabled, the null-blk driver sets up fault injection support by creating the timeout_inject, requeue_inject, and init_hctx_fault_inject configfs items as children of the top-level nullbX configfs group. However, when the nullbX device is removed, the references taken to these fault-config configfs items are not released. As a result, kmemleak reports a memory leak, for example: unreferenced object 0xc00000021ff25c40 (size 32): comm "mkdir", pid 10665, jiffies 4322121578 hex dump (first 32 bytes): 69 6e 69 74 5f 68 63 74 78 5f 66 61 75 6c 74 5f init_hctx_fault_ 69 6e 6a 65 63 74 00 88 00 00 00 00 00 00 00 00 inject.......... backtrace (crc 1a018c86): __kmalloc_node_track_caller_noprof+0x494/0xbd8 kvasprintf+0x74/0xf4 config_item_set_name+0xf0/0x104 config_group_init_type_name+0x48/0xfc fault_config_init+0x48/0xf0 0xc0080000180559e4 configfs_mkdir+0x304/0x814 vfs_mkdir+0x49c/0x604 do_mkdirat+0x314/0x3d0 sys_mkdir+0xa0/0xd8 system_call_exception+0x1b0/0x4f0 system_call_vectored_common+0x15c/0x2ec Fix this by explicitly releasing the references to the fault-config configfs items when dropping the reference to the top-level nullbX configfs group.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
CVE ID : CVE-2026-23032
Published : Jan. 31, 2026, 12:16 p.m. | 2 hours, 14 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: null_blk: fix kmemleak by releasing references to fault configfs items When CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION is enabled, the null-blk driver sets up fault injection support by creating the timeout_inject, requeue_inject, and init_hctx_fault_inject configfs items as children of the top-level nullbX configfs group. However, when the nullbX device is removed, the references taken to these fault-config configfs items are not released. As a result, kmemleak reports a memory leak, for example: unreferenced object 0xc00000021ff25c40 (size 32): comm "mkdir", pid 10665, jiffies 4322121578 hex dump (first 32 bytes): 69 6e 69 74 5f 68 63 74 78 5f 66 61 75 6c 74 5f init_hctx_fault_ 69 6e 6a 65 63 74 00 88 00 00 00 00 00 00 00 00 inject.......... backtrace (crc 1a018c86): __kmalloc_node_track_caller_noprof+0x494/0xbd8 kvasprintf+0x74/0xf4 config_item_set_name+0xf0/0x104 config_group_init_type_name+0x48/0xfc fault_config_init+0x48/0xf0 0xc0080000180559e4 configfs_mkdir+0x304/0x814 vfs_mkdir+0x49c/0x604 do_mkdirat+0x314/0x3d0 sys_mkdir+0xa0/0xd8 system_call_exception+0x1b0/0x4f0 system_call_vectored_common+0x15c/0x2ec Fix this by explicitly releasing the references to the fault-config configfs items when dropping the reference to the top-level nullbX configfs group.
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...