Библиотека Python разработчика | Книги по питону
19.1K subscribers
1.07K photos
404 videos
82 files
1.03K links
Полезные материалы для питониста по Фреймворкам Django, Flask, FastAPI, Pyramid, Tornado и др.

По всем вопросам @evgenycarter

РКН clck.ru/3Ko7Hq
Download Telegram
Как ускорить вычисления в Python с помощью multiprocessing.Pool

Когда речь заходит о ресурсоемких задачах, которые нагружают ваш CPU, стоит обратить внимание на библиотеку multiprocessing, а именно на класс Pool. Он позволяет задействовать все доступные ядра процессора, автоматически распределяя задачи между ними.

Вот простой пример:


import math
from multiprocessing import Pool

# Генерируем список входных данных
inputs = [i ** 2 for i in range(100, 130)]

# Функция для вычислений
def f(x):
return len(str(math.factorial(x)))

# Последовательное выполнение
%timeit [f(x) for x in inputs]
# Результат: ~1.44 сек

# Параллельное выполнение
p = Pool(4) # Создаем пул из 4 процессов
%timeit p.map(f, inputs)
# Результат: ~451 мс


📲 Мы в MAX

👉@BookPython
Please open Telegram to view this post
VIEW IN TELEGRAM
👍43
Модуль multiprocessing в Python: потоки против процессов

Модуль multiprocessing позволяет создавать не только процессы, но и потоки. Однако стоит помнить о главной особенности CPython — GIL (Global Interpreter Lock). Этот механизм блокирует выполнение байт-кода Python несколькими потоками одновременно.

Это означает, что потоки полезны в основном в случаях, когда программа выполняет операции, не связанные с Python-интерпретатором, например, ожидание ввода-вывода (IO). К примеру, загрузка трёх различных статей из Википедии будет одинаково эффективной как с потоками, так и с процессами. Причём результат в три раза быстрее по сравнению с выполнением задачи в одном процессе:


from multiprocessing import Pool
from multiprocessing.pool import ThreadPool
import requests

def download_wiki_article(article):
url = 'http://de.wikipedia.org/wiki/'
return requests.get(url + article)

process_pool = Pool(3)
thread_pool = ThreadPool(3)

thread_pool.map(download_wiki_article, ['a', 'b', 'c'])
# ~376 ms

process_pool.map(download_wiki_article, ['a', 'b', 'c'])
# ~373 ms

[download_wiki_article(a) for a in ['a', 'b', 'c']]
# ~1.09 s


Однако использование потоков для задач, нагружающих CPU, практически бессмысленно:


import math
from multiprocessing import Pool
from multiprocessing.pool import ThreadPool

def f(x):
return len(str(math.factorial(x)))

process_pool = Pool(4)
thread_pool = ThreadPool(4)
inputs = [i ** 2 for i in range(100, 130)]

[f(x) for x in inputs]
# ~1.48 s

thread_pool.map(f, inputs)
# ~1.48 s

process_pool.map(f, inputs)
# ~478 ms


При задачах, требующих интенсивных вычислений, использование процессов вместо потоков даст значительный прирост производительности благодаря распределению нагрузки между несколькими ядрами процессора.

📲 Мы в MAX

👉@BookPython
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
Если вам нужно выполнить поиск в отсортированной коллекции, то бинарный поиск — это именно то, что вам нужно. Этот простой алгоритм сравнивает искомое значение с элементом в середине массива; результат определяет, какую половину нужно искать дальше.

Стандартная библиотека Python предоставляет возможность использовать бинарный поиск без его непосредственной реализации. Функция bisect_left возвращает самую левую позицию элемента в отсортированном списке, а bisect_right — самую правую.


from random import randrange
from bisect import bisect_left

n = 1000000
look_for = 555555
lst = sorted(randrange(0, n) for _ in range(n))

%timeit look_for in lst
# 69.7 ms ± 449 µs на цикл

%timeit look_for == lst[bisect_left(lst, look_for)]
# 927 ns ± 2.28 ns на цикл


Результаты демонстрируют, что использование бинарного поиска через bisect_left быстрее, чем стандартный поиск в списке с помощью оператора in.

📲 Мы в MAX

👉@BookPython
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1