Библиотека Python разработчика | Книги по питону
19.5K subscribers
1.05K photos
391 videos
82 files
988 links
Полезные материалы для питониста по Фреймворкам Django, Flask, FastAPI, Pyramid, Tornado и др.

По всем вопросам @evgenycarter

РКН clck.ru/3Ko7Hq
Download Telegram
Python backend

Python - Архитектура кода
Python - Базы данных и миграции
Python - Тестирование
Python - Тестирование
Нагрузочное тестирование
Нагрузочное тестирование (лайвкодинг)
Девопс, деплой, CI/CD. Часть 1
Девопс, деплой, CI/CD. Часть 2
Архитектура распределенных систем
Python - Дебаг - логирование - профилирование
Код-ревью
Python - Асинхронное программирование. Часть 1
Python - Асинхронное программирование. Часть 2
Отбор в IT компанию
Лекция Практики разработчиков
Интенсив по алгоритмам. Введение
Интенсив по алгоритмам. Разбор ДЗ 2

Все видео доступны на youtube

👉@BookPython
Генераторы — один из самых полезных механизмов в Python. Они имеют множество применений, одно из которых — создание менеджеров контекста. Обычно нужно вручную определять магические методы __enter__ и __exit__, но декоратор @contextmanager из модуля contextlib делает это намного удобнее:


from contextlib import contextmanager

@contextmanager
def atomic():
print('BEGIN')

try:
yield
except Exception:
print('ROLLBACK')
else:
print('COMMIT')

Теперь atomic — это менеджер контекста, который можно использовать следующим образом:



In : with atomic():
...: print('ERROR')
...: raise RuntimeError()
...:
BEGIN
ERROR
ROLLBACK

Кроме того, @contextmanager позволяет использовать его как декоратор, так и менеджер контекста.


In : @atomic()
...: def ok():
...: print('OK')
...:
In : ok()
...:
BEGIN
OK
COMMIT

👉@BookPython
Вредные советы python разработчику


l=[['a', 'b', 'c'], ['1', '2'], ['#']]
sum(l, [])


В Python можно выпрямить вложенные списки с помощью... функции sum(). Вот код (выполнять, пока никто не видит):

Дело в том, что sum() принимает первым аргументом итерируемый объект, а вторым — значение, с которого начинается операция. По умолчанию это 0, но если указать пустой список [], то sum() начнёт с него. Затем sum() последовательно применяет операцию сложения к элементам первого аргумента, начиная со значения второго аргумента. В случае списков это означает конкатенацию.

👉@BookPython
Простая, но гибкая естественная сортировка на языке Python

Когда вы пытаетесь отсортировать список строк, содержащих числа, обычный алгоритм сортировки python сортирует лексикографически, поэтому вы можете не получить ожидаемых результатов

>>> a = ['2 ft 7 in', '1 ft 5 in', '10 ft 2 in', '2 ft 11 in', '7 ft 6 in']
>>> sorted(a)
['1 ft 5 in', '10 ft 2 in', '2 ft 11 in', '2 ft 7 in', '7 ft 6 in']


https://github.com/SethMMorton/natsort

👉@BookPython
В Python вы можете переопределить оператор квадратных скобок ([]), определив магический метод getitem. Примером может быть объект Cycle, который виртуально содержит бесконечное количество повторяющихся элементов:


class Cycle:
def __init__(self, lst):
self._lst = lst

def __getitem__(self, index):
return self._lst[index % len(self._lst)]

print(Cycle(['a', 'b', 'c'])[100]) # prints 'b'


Необычность здесь заключается в том, что оператор [] поддерживает уникальный синтаксис. Он может использоваться не только так — [2], но и так — [2:10], или [2:10:2], или [2::2], или даже [:]. Семантика — [start:stop:step], но вы можете применять её так, как вам нужно, для ваших собственных объектов.

Но что же получает getitem в качестве параметра index, если использовать этот синтаксис? Для этого существуют объекты slice.


In : class Inspector:
...: def __getitem__(self, index):
...: print(index)
...:
In : Inspector()[1]
1
In : Inspector()[1:2]
slice(1, 2, None)
In : Inspector()[1:2:3]
slice(1, 2, 3)
In : Inspector()[:]
slice(None, None, None)


Вы даже можете комбинировать синтаксис кортежей и срезов:


In : Inspector()[:, 0, :]
(slice(None, None, None), 0, slice(None, None, None))


Slice не делает ничего, кроме как просто хранит атрибуты start, stop и step.


In : s = slice(1, 2, 3)
In : s.start
Out: 1
In : s.stop
Out: 2
In : s.step
Out: 3


👉@BookPython
Что такое контекстный менеджер в Python?

Контекстный менеджер в Python — это специальный тип объекта, который определяет методы enter() и exit() и используется с инструкцией with. Эти объекты часто применяются в операциях, которые требуют установки и освобождения ресурсов. 

Частый сценарий — это работа с файлом:


with open('file.txt', 'r') as file:
data = file.read()


Здесь контекстный менеджер гарантирует, что файл будет корректно закрыт после завершения блока with, даже если при чтении файла возникнет исключение.

Вот как можно написать простой контекстный менеджер самостоятельно:


import time

class Timer:
def __enter__(self):
self.start = time.time()

def __exit__(self, exc_type, exc_val, exc_tb):
self.end = time.time()
print(f'Время выполнения: {self.end - self.start:.2f} секунд')

with Timer():
# код, время выполнения которого нужно измерить
time.sleep(2)


👉@BookPython
Подборка Telegram каналов для программистов

Системное администрирование 📌
https://t.me/sysadmin_girl Девочка Сисадмин
https://t.me/srv_admin_linux Админские угодья
https://t.me/linux_srv Типичный Сисадмин

https://t.me/devops_star DevOps Star (Звезда Девопса)
https://t.me/i_linux Системный администратор
https://t.me/linuxchmod Linux
https://t.me/sys_adminos Системный Администратор
https://t.me/tipsysdmin Типичный Сисадмин (фото железа, было/стало)
https://t.me/sysadminof Книги для админов, полезные материалы
https://t.me/i_odmin Все для системного администратора
https://t.me/i_odmin_book Библиотека Системного Администратора
https://t.me/i_odmin_chat Чат системных администраторов
https://t.me/i_DevOps DevOps: Пишем о Docker, Kubernetes и др.
https://t.me/sysadminoff Новости Линукс Linux

1C разработка 📌
https://t.me/odin1C_rus Cтатьи, курсы, советы, шаблоны кода 1С

Программирование C++📌
https://t.me/cpp_lib Библиотека C/C++ разработчика
https://t.me/cpp_knigi Книги для программистов C/C++
https://t.me/cpp_geek Учим C/C++ на примерах

Программирование Python 📌
https://t.me/pythonofff Python академия. Учи Python быстро и легко🐍
https://t.me/BookPython Библиотека Python разработчика
https://t.me/python_real Python подборки на русском и английском
https://t.me/python_360 Книги по Python Rus

Java разработка 📌
https://t.me/BookJava Библиотека Java разработчика
https://t.me/java_360 Книги по Java Rus
https://t.me/java_geek Учим Java на примерах

GitHub Сообщество 📌
https://t.me/Githublib Интересное из GitHub

Базы данных (Data Base) 📌
https://t.me/database_info Все про базы данных

Мобильная разработка: iOS, Android 📌
https://t.me/developer_mobila Мобильная разработка
https://t.me/kotlin_lib Подборки полезного материала по Kotlin

Фронтенд разработка 📌
https://t.me/frontend_1 Подборки для frontend разработчиков
https://t.me/frontend_sovet Frontend советы, примеры и практика!
https://t.me/React_lib Подборки по React js и все что с ним связано

Разработка игр 📌
https://t.me/game_devv Все о разработке игр

Библиотеки 📌
https://t.me/book_for_dev Книги для программистов Rus
https://t.me/programmist_of Книги по программированию
https://t.me/proglb Библиотека программиста
https://t.me/bfbook Книги для программистов
https://t.me/books_reserv Книги для программистов

БигДата, машинное обучение 📌
https://t.me/bigdata_1 Data Science, Big Data, Machine Learning, Deep Learning

Программирование 📌
https://t.me/bookflow Лекции, видеоуроки, доклады с IT конференций
https://t.me/coddy_academy Полезные советы по программированию
https://t.me/rust_lib Полезный контент по программированию на Rust
https://t.me/golang_lib Библиотека Go (Golang) разработчика
https://t.me/itmozg Программисты, дизайнеры, новости из мира IT
https://t.me/php_lib Библиотека PHP программиста 👨🏼‍💻👩‍💻
https://t.me/nodejs_lib Подборки по Node js и все что с ним связано
https://t.me/ruby_lib Библиотека Ruby программиста

QA, тестирование 📌
https://t.me/testlab_qa Библиотека тестировщика

Шутки программистов 📌
https://t.me/itumor Шутки программистов

Защита, взлом, безопасность 📌
https://t.me/thehaking Канал о кибербезопасности
https://t.me/xakep_1 Статьи из "Хакера"

Книги, статьи для дизайнеров 📌
https://t.me/ux_web Статьи, книги для дизайнеров

Английский 📌
https://t.me/UchuEnglish Английский с нуля

Математика 📌
https://t.me/Pomatematike Канал по математике
https://t.me/phis_mat Обучающие видео, книги по Физике и Математике

Excel лайфхак📌
https://t.me/Excel_lifehack

https://t.me/tikon_1 Новости высоких технологий, науки и техники💡
https://t.me/mir_teh Мир технологий (Technology World)

Вакансии 📌
https://t.me/sysadmin_rabota Системный Администратор
https://t.me/progjob Вакансии в IT
Обзор библиотеки RxPY

Сегодня поговорим о хорошей библиотеке для управления потоками данных в Python – RxPY — реализации Reactive Extensions для нашего любимого языка. В версии 4.0.4 эта библиотека получила ряд улучшений, и сегодня мы разберем её основной функционал.

Основы RxPY
RxPY — это библиотека, реализующая принципы функционального реактивного программирования в Python. Она позволяет создавать и управлять асинхронными потоками данных, объединяя их, фильтруя и трансформируя с помощью цепочек операторов. Основные компоненты RxPY:

Observable: источник данных, который может выдавать события.
Observer: подписчик, который реагирует на события от Observable.
Операторы: функции, позволяющие трансформировать, фильтровать и комбинировать Observable.

https://habr.com/ru/companies/otus/articles/849810/

👉@BookPython
Создание ботов на Python с использованием aiogram

Создание Telegram ботов на AIOGRAM 3.4
Фильтры и работа с сообщениями на AIOGRAM 3.4
Роутеры и структура Telegram бота на AIOGRAM 3.4
Клавиатура в Телеграм Ботах - Inline Reply и Builder на AIOGRAM 3.4
CallbackQuery на AIOGRAM 3.4
FSM Context - машина состояний на AIOGRAM 3.4
Middleware на AIOGRAM 3.4
Телеграм Бот на Python с нуля! | Telegram Bot на Aiogram для начинающих
База Данных и Выгрузка на Сервер Телеграм Бота на Python - Aiogram 3
PostgreSQL + Скрытие Токена в .env - Aiogram 3
ДЕПЛОЙ БОТА НА СЕРВЕР | AIOGRAM 3
To Do БОТ на Python для ТЕЛЕГРАМ | AIOGRAM EASY BOT #1

источник

👉@BookPython