This media is not supported in your browser
VIEW IN TELEGRAM
๐ฅMarker-free 6D-point tracking๐ฅ
๐Full position and rotation of skeletal joints, with only a RGB frame
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Full 3-axis joint rotations
โ V-markers, emulating mocap
โ #3D from monocular with NN
โ Generalization, no retraining
โ SOTA rotation/position est.
More: https://bit.ly/34GdoF5
๐Full position and rotation of skeletal joints, with only a RGB frame
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Full 3-axis joint rotations
โ V-markers, emulating mocap
โ #3D from monocular with NN
โ Generalization, no retraining
โ SOTA rotation/position est.
More: https://bit.ly/34GdoF5
๐ฅ12๐คฏ1
This media is not supported in your browser
VIEW IN TELEGRAM
๐งผ Synthetic dataset for #Retail ๐งผ
๐A large-scale photorealistic synthetic dataset with annotations for semantic segmentation, instance segmentation, depth estimation, and object detection.
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Dataset from Standard.AI
โ 2,134 unique scenes
โ 25k+ annotated samples
โ Introducing the "change detection"
โ Multi-view representation learning
โ NonCommercial-ShareAlike 4.0
More: https://bit.ly/3uXqubB
๐A large-scale photorealistic synthetic dataset with annotations for semantic segmentation, instance segmentation, depth estimation, and object detection.
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Dataset from Standard.AI
โ 2,134 unique scenes
โ 25k+ annotated samples
โ Introducing the "change detection"
โ Multi-view representation learning
โ NonCommercial-ShareAlike 4.0
More: https://bit.ly/3uXqubB
๐คฏ6๐ฅฐ3๐1๐ฅ1๐1
This media is not supported in your browser
VIEW IN TELEGRAM
๐ Graph Neural Nets Forecasting๐
๐Data-driven approach for forecasting global weather using graph neural networks
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Data-driven forecasting via GNNs
โ Model: 6.7M parameters, float32
โ 6-hours forecast in 0.04 secs.
โ A 5-day forecast in 0.8 secs.
More: https://bit.ly/3LH4CXR
๐Data-driven approach for forecasting global weather using graph neural networks
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Data-driven forecasting via GNNs
โ Model: 6.7M parameters, float32
โ 6-hours forecast in 0.04 secs.
โ A 5-day forecast in 0.8 secs.
More: https://bit.ly/3LH4CXR
๐4๐2๐ค1
Media is too big
VIEW IN TELEGRAM
๐ฅซWatch Those Words!๐ฅซ
๐Berkeley unveils a novel approach to discover cheap-fake and visually persuasive deep-fakes
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Regardless of falsification
โ Semantic person-specific
โ Word-conditioned analysis
โ Generalization across fakes
More: https://bit.ly/3oXWmcd
๐Berkeley unveils a novel approach to discover cheap-fake and visually persuasive deep-fakes
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Regardless of falsification
โ Semantic person-specific
โ Word-conditioned analysis
โ Generalization across fakes
More: https://bit.ly/3oXWmcd
๐5๐ฑ1
This media is not supported in your browser
VIEW IN TELEGRAM
๐V2X-sim for #selfdriving is out!๐
๐V2X: collaboration between a vehicle and any surrounding entity
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Suitable for #selfdrivingcars
โ Rec. from road & vehicles
โ Multi-streams/perception
โ Detection, tracking, & segmentation
โ RGB, depth, semantic, BEV & LiDAR
More: https://bit.ly/3H6veOI
๐V2X: collaboration between a vehicle and any surrounding entity
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Suitable for #selfdrivingcars
โ Rec. from road & vehicles
โ Multi-streams/perception
โ Detection, tracking, & segmentation
โ RGB, depth, semantic, BEV & LiDAR
More: https://bit.ly/3H6veOI
๐ฅ6๐คฉ1
This media is not supported in your browser
VIEW IN TELEGRAM
๐Infinite Synthetic dataset for Fitness๐
๐Opensource synthetic images for fitness, single/multi-person, and realistic variation in lighting, camera angles, and occlusions
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ 60k images, 1-5 avatars
โ 15 categories, 21 variations
โ Blender and ray-tracing
โ SMPL-X + facial expression
โ Cloth/skin tone sampled
โ 147 4K HDRI panoramas
โ Creative Commons 4.0
More: https://bit.ly/33B1R9q
๐Opensource synthetic images for fitness, single/multi-person, and realistic variation in lighting, camera angles, and occlusions
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ 60k images, 1-5 avatars
โ 15 categories, 21 variations
โ Blender and ray-tracing
โ SMPL-X + facial expression
โ Cloth/skin tone sampled
โ 147 4K HDRI panoramas
โ Creative Commons 4.0
More: https://bit.ly/33B1R9q
๐คฉ5โค1๐1
This media is not supported in your browser
VIEW IN TELEGRAM
โ DITTO: Digital Twins from Interaction โ
๐Digitizing objects for #metaverse through interactive perception
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ DIgital Twin of arTiculated Objects
โ Geometry & kinematic articulation
โ Articulation & 3D via perception
โ Source code under MIT License
More:https://bit.ly/3LMazCV
๐Digitizing objects for #metaverse through interactive perception
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ DIgital Twin of arTiculated Objects
โ Geometry & kinematic articulation
โ Articulation & 3D via perception
โ Source code under MIT License
More:https://bit.ly/3LMazCV
๐ฅ5โค2๐1๐คฏ1
This media is not supported in your browser
VIEW IN TELEGRAM
๐ค Robotic Telekinesis from Youtube ๐ค
๐CMU unveils a Robot that observes humans and imitates their actions in real-time
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Enabling robo-hand teleoperation
โ Suitable for untrained operator
โ Single uncalibrated RGB camera
โ Leveraging unlabeled #youtube
โ No active fine-tuning or setup
โ No collision via Adv-Training
More: https://bit.ly/3H7zUnh
๐CMU unveils a Robot that observes humans and imitates their actions in real-time
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Enabling robo-hand teleoperation
โ Suitable for untrained operator
โ Single uncalibrated RGB camera
โ Leveraging unlabeled #youtube
โ No active fine-tuning or setup
โ No collision via Adv-Training
More: https://bit.ly/3H7zUnh
๐ฅ3๐คฏ2๐1๐1
This media is not supported in your browser
VIEW IN TELEGRAM
๐DIGAN: #AI for video generation๐
๐A novel INR-based generative adversarial network for video generation
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Dynamics-aware generator
โ INR-based clip generator
โ Manipulating space/time
โ Identifying unnatural motion
More: https://bit.ly/3H6sHE4
๐A novel INR-based generative adversarial network for video generation
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Dynamics-aware generator
โ INR-based clip generator
โ Manipulating space/time
โ Identifying unnatural motion
More: https://bit.ly/3H6sHE4
๐ฅ4๐คฏ1
This media is not supported in your browser
VIEW IN TELEGRAM
๐ฆFILM Neural Frame Interpolation๐ฆ
๐Frame interpolation that synthesizes multiple intermediate frames from two input images with large in-between motion
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Single unified network
โ High quality output
โ SOTA on the Xiph
โ Apache License 2.0
More: https://bit.ly/3pl4ZxH
๐Frame interpolation that synthesizes multiple intermediate frames from two input images with large in-between motion
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Single unified network
โ High quality output
โ SOTA on the Xiph
โ Apache License 2.0
More: https://bit.ly/3pl4ZxH
๐ฅ5๐2๐ฅฐ1
This media is not supported in your browser
VIEW IN TELEGRAM
๐Neural Maintenance via listening๐
๐Novel neural-method to detect whether a machine is "healthy" or requires maintenance
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Defects at an early stage
โ FDWT, fast discrete wavelet
โ Learnable wavelet/denoising
โ Unsupervised learnable FDWT
โ The new SOTA in PM
More: https://bit.ly/3hiKWeX
๐Novel neural-method to detect whether a machine is "healthy" or requires maintenance
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Defects at an early stage
โ FDWT, fast discrete wavelet
โ Learnable wavelet/denoising
โ Unsupervised learnable FDWT
โ The new SOTA in PM
More: https://bit.ly/3hiKWeX
๐คฏ6๐ค1
This media is not supported in your browser
VIEW IN TELEGRAM
๐ฆ๐จ StyleGAN on Internet pics ๐ฆ๐จ
๐StyleGAN on raw uncurated images collected from Internet
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Outliers & multi-modal
โ Self-distillation approach
โ Self-filtering of outliers
โ Perceptual clustering
More: https://bit.ly/33Z1d5H
๐StyleGAN on raw uncurated images collected from Internet
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Outliers & multi-modal
โ Self-distillation approach
โ Self-filtering of outliers
โ Perceptual clustering
More: https://bit.ly/33Z1d5H
โค2๐1๐ฅ1๐คฏ1
This media is not supported in your browser
VIEW IN TELEGRAM
๐ฆThe new SOTA for Unsupervised ๐ฆ
๐Self-supervised transformer to discover objects in images
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Visual tokens as nodes in graph
โ Edges as connectivity score
โ The second smallest eV = fg
โ Suitable for unsupervised saliency
โ Weakly supervised obj. detection
โ Code under MIT License
More: https://bit.ly/3sqbFg3
๐Self-supervised transformer to discover objects in images
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Visual tokens as nodes in graph
โ Edges as connectivity score
โ The second smallest eV = fg
โ Suitable for unsupervised saliency
โ Weakly supervised obj. detection
โ Code under MIT License
More: https://bit.ly/3sqbFg3
๐4๐ฅ3๐คฏ1
This media is not supported in your browser
VIEW IN TELEGRAM
๐ฅฆ GAN-generated CryptoPunks ๐ฅฆ
๐A simple (and funny) SN-GAN to generate cryptopunks
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Spectral normalization (2018)
โ Easy to incorporate into training
โ A project by Teddy Koker ๐ฉ
More: https://bit.ly/35C1rQI
๐A simple (and funny) SN-GAN to generate cryptopunks
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Spectral normalization (2018)
โ Easy to incorporate into training
โ A project by Teddy Koker ๐ฉ
More: https://bit.ly/35C1rQI
โค3๐3๐1๐1
This media is not supported in your browser
VIEW IN TELEGRAM
๐คชSEER: self-AI from BILLIONS pic๐คช
๐META + INRIA trained models on billions of random images without any pre-processing or assumptions
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Self-supervised on pics from web
โ Discovering properties in datasets
โ More fair, less biased & less harmful
โ Better OOD generalization
โ Source code available!
More: https://bit.ly/3vy69dd
๐META + INRIA trained models on billions of random images without any pre-processing or assumptions
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Self-supervised on pics from web
โ Discovering properties in datasets
โ More fair, less biased & less harmful
โ Better OOD generalization
โ Source code available!
More: https://bit.ly/3vy69dd
๐ฅ4๐3๐คฏ1
This media is not supported in your browser
VIEW IN TELEGRAM
๐ฒA novel AI-controllable synthesis๐ฒ
๐Modeling local semantic parts separately and synthesizing images in a compositional way
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Structure & texture locally controlled
โ Disentanglement between areas
โ Fine-grained editing of images
โ Extendible via transfer learning
โ Just accepted to #CVPR2022
More: https://bit.ly/3IBgkBy
๐Modeling local semantic parts separately and synthesizing images in a compositional way
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Structure & texture locally controlled
โ Disentanglement between areas
โ Fine-grained editing of images
โ Extendible via transfer learning
โ Just accepted to #CVPR2022
More: https://bit.ly/3IBgkBy
๐ฑ3๐คฏ2โค1
This media is not supported in your browser
VIEW IN TELEGRAM
๐ฅฃ #AI-Generation with Dream Fields ๐ฅฃ
๐Neural rendering with multi-modal image and text representations
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Aligned image & text models
โ 3D from natural language
โ No additional data
โ D.F. neural-scene
More: https://bit.ly/3Mhwm5D
๐Neural rendering with multi-modal image and text representations
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Aligned image & text models
โ 3D from natural language
โ No additional data
โ D.F. neural-scene
More: https://bit.ly/3Mhwm5D
๐10๐1
This media is not supported in your browser
VIEW IN TELEGRAM
๐ช Mip-NeRF 360 for unbounded scenes ๐ช
๐An extension of NeRF to overcome the challenges presented by unbounded scenes
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Realistic synthesized views
โ Intricate/unbounded scenes
โ Detailed depth maps
โ Mean-squared error -54%
โ No code provided ๐ฅ
More: https://bit.ly/36ZxsD4
๐An extension of NeRF to overcome the challenges presented by unbounded scenes
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Realistic synthesized views
โ Intricate/unbounded scenes
โ Detailed depth maps
โ Mean-squared error -54%
โ No code provided ๐ฅ
More: https://bit.ly/36ZxsD4
๐คฏ4โค1
This media is not supported in your browser
VIEW IN TELEGRAM
๐ PINA: personal Neural Avatar ๐
๐A novel method to acquire neural avatars from RGB-D videos
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ A virtual copy of themselves
โ Realistic clothing deformations
โ Shape & non-rigid deformation
โ Avatars from RGB-D sequences
โ Creative Commons Zero v1.0
More: https://bit.ly/3HAtRIh
๐A novel method to acquire neural avatars from RGB-D videos
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ A virtual copy of themselves
โ Realistic clothing deformations
โ Shape & non-rigid deformation
โ Avatars from RGB-D sequences
โ Creative Commons Zero v1.0
More: https://bit.ly/3HAtRIh
๐4โค1๐1๐1
This media is not supported in your browser
VIEW IN TELEGRAM
๐ฆ EfficientVIS: new SOTA for VIS ๐ฆ
๐Simultaneous classification, segmentation, and tracking multiple object instances in videos
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Efficient and fully end-to-end
โ Iterative query-video interaction
โ First RoI-wise clip-level RT-VIS
โ Requires 15ร fewer epochs
More: https://bit.ly/3KfqurN
๐Simultaneous classification, segmentation, and tracking multiple object instances in videos
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Efficient and fully end-to-end
โ Iterative query-video interaction
โ First RoI-wise clip-level RT-VIS
โ Requires 15ร fewer epochs
More: https://bit.ly/3KfqurN
๐10๐ฅ3๐1๐คฏ1